Переменный ток почему переменный
Перейти к содержимому

Переменный ток почему переменный

  • автор:

Переменный ток

Физика

Переме́нный ток, электрический ток, изменяющийся во времени по величине и/или направлению. В общем случае к переменному току относят различные виды импульсных, пульсирующих, периодических и квазипериодических токов. Если любые значения переменного тока повторяются через равные промежутки времени, то переменный ток называется периодическим. Периодом T T T переменного тока называется наименьший промежуток времени, в котором силы тока в моменты времени t t t и t + T t + T t + T равны: i ( t ) = i ( t + T ) i(t) = i(t + T) i ( t ) = i ( t + T ) . В технике под переменным током обычно подразумевают периодический (или близкий к периодическому) ток, в котором средние за период значения силы тока и напряжения равны нулю.

В том случае, когда переменный ток меняется по направлению, одно из направлений переменного тока принимают за положительное, а противоположное – за отрицательное. Соответственно, если направление переменного тока в некоторый момент времени совпадает с положительным направлением, то значение тока также считают положительным, а для противоположного направления тока – отрицательным. В простейшем случае мгновенное значение силы переменного тока изменяется во времени по гармоническому закону (гармонический, или синусоидальный, переменный ток):

i = I m s i n ( ω t + α ) i = I_msin( \omega t+α) i = I m ​ s in ( ω t + α ) ,

где I m I_m I m ​ амплитуда тока, α \alpha α – начальная фаза, ω = 2 π f ω = 2πf ω = 2 π f – круговая частота, f = 1 / T f = 1/T f = 1/ T – линейная частота. Гармонический ток возникает под действием синусоидального напряжения u той же частоты:

u = U m s i n ( ω t + β ) u = U_msin(ωt+β) u = U m ​ s in ( ω t + β ) ,

где U m U_m U m ​ – амплитуда напряжения, β \beta β – начальная фаза.

Для характеристики переменного тока удобно использовать действующие (или эффективные) значения тока и напряжения, которые представляют собой среднеквадратичные (за период) значения силы тока и напряжения. Для синусоидальных токов действующие значения переменного тока и напряжения равны: I = I m 2 \displaystyle I= \frac < \sqrt[]> I = 2

​ I m ​ ​ и U = U m 2 \displaystyle U= \frac < \sqrt[]> U = 2

​ U m ​ ​ . Большая часть приборов, используемых для измерения периодических напряжений и токов, показывает действующие значения этих величин. Произведение действующих значений тока и напряжения определяет мощность, которая расходуется на выделение теплоты или на совершение механической работы в электрической цепи .

Важной характеристикой переменного тока является его частота f. В электроэнергетических системах Российской Федерации и большинства стран мира принята стандартная частота f f f = 50 Гц, в США f f f = 60 Гц. В технике связи применяются переменные токи высокой частоты (от 100 кГц до 30 ГГц). Для специальных целей в промышленности, медицине и других отраслях науки и техники используют переменный ток самых различных частот, а также импульсные токи .

В электротехнике (и частично в радиотехнике) обычно реализуются электрические цепи квазистационарных токов , при этом мгновенные значения переменного тока во всех участках цепи одинаковы. В многопроводных квазистационарных системах, предназначенных для передачи энергии, часто используют многофазные переменные токи – текущие по разным проводам токи с одинаковыми амплитудами, но разными фазами . Большинство цепей, содержащих сопротивления, ёмкости и индуктивности, работает в линейном режиме, когда справедлив принцип суперпозиции . При прохождении через такие цепи гармонические переменные токи не искажают своей формы, тогда как при наличии нелинейных элементов (например, сердечников в трансформаторах, нелинейных преобразователей, электронных ламп и т. п.) синусоидальные сигналы искажаются, обогащаясь высшими гармониками – сигналами на частотах, кратных основной частоте. Квазистационарные цепи с сосредоточенными параметрами могут быть составлены в виде определённой комбинации сопротивлений R R R , индуктивностей L L L и ёмкостей C C C . Если в электрической цепи протекает установившийся квазистационарный электрический ток, то напряжения на сопротивлении u R u_R u R ​ , индуктивности u L u_L u L ​ и ёмкости u C u_C u C ​ определяются соотношениями:

u R = i R uR = iR u R = i R , u L = L d i d t \displaystyle u_L=L \frac u L ​ = L d t d i ​ , C d u C d t = i \displaystyle C \frac=i C d t d u C ​ ​ = i .

Для синусоидального тока i = I m sin ⁡ ω t i = I_m \sin \omega t i = I m ​ sin ω t соответствующие амплитудные значения напряжений на данных элементах равны:

U R m = R I m U_=RI_m U R m ​ = R I m ​ , U L m = ω L I m U_= \omega LI_m U L m ​ = ω L I m ​ , U C m = I m ω C \displaystyle U_= \frac < \omega C>U C m ​ = ω C I m ​ ​ .

В нелинейных режимах величины R R R , L L L и C C C являются функциями протекающего тока i; в линейных режимах они либо постоянны, либо зависят в явном виде от времени (параметрические системы).

При расчёте электрических цепей гармонических переменных токов удобно использовать комплексные амплитуды напряжения и тока, а также комплексные сопротивления Z Z Z ( импеданс ), определяемые на резистивных, индуктивных и ёмкостных участках цепи соответственно как

Z R = R Z_R=R Z R ​ = R , Z L = j ω L Z_L=j \omega L Z L ​ = jω L и Z C = 1 j ω C \displaystyle Z_C= \frac Z C ​ = jω C 1 ​ (здесь j j j – мнимая единица).

Тогда квазистационарная линейная цепь (многополюсник) может быть рассчитана по правилам Кирхгофа , т. е. в этом случае применимы методы расчётов цепей постоянного тока.

С ростом частоты, когда размер электрической цепи становится сравнимым с длиной электромагнитной волны λ = c / f \lambda = c/f λ = c / f ( c c c – скорость света), квазистационарное приближение перестаёт быть справедливым, и для получения распределения переменного тока необходимо применять уравнения Максвелла . При этом протекающий по проводящей среде переменный ток распределяется по сечению не равномерно, а преимущественно в поверхностном слое. Иногда такие токи называют быстропеременными и оперируют не суммарными (интегральными) силами тока, а их объёмными плотностями. Плотность быстропеременных токов включает потенциальную и вихревую компоненты. Последняя ответственна за возбуждение вихревых электромагнитных полей. В открытых (неэкранированных) системах именно с вихревыми переменными токами связано излучение электромагнитной энергии, что используется, например, в излучателях (антеннах), где путём подбора распределений быстропеременных токов создаются требуемые угловые распределения полей излучения (диаграммы направленности).

Опубликовано 22 июня 2022 г. в 11:23 (GMT+3). Последнее обновление 22 июня 2022 г. в 11:23 (GMT+3). Связаться с редакцией

Что такое переменный ток и чем он отличается от тока постоянного

Переменный ток , в отличие от тока постоянного, непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.

Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.

На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока.

Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).

Схема простейшего генератора переменного тока

Рисунок 1. Схема простейшего генератора переменного тока

Убедимся в том, что такое устройство действительно является источником переменной ЭДС.

Предположим, что магнит создает между своими полюсами равномерное магнитное поле, т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.

Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.

В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.

В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .

Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.

Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.

Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.

Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.

ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.

Используя явление электромагнитной индукции, можно получить переменную ЭДС и, следовательно, переменный ток.

Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.

Преимущества переменного тока — простота генерирования и преобразования величины напряжения, экономичность передачи на высоком напряжении, простота распределения электроэнергии и ее использования с помощью надежных и дешевых асинхронных двигателей.

Что такое переменный ток и чем он отличается от тока постоянного

Графическое изображение постоянного и переменного токов

Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.

Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).

На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.

Графическое изображение постоянного и переменного тока

Графическое изображение постоянного и переменного тока

Рисунок 2. Графическое изображение постоянного и переменного тока

Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.

Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.

Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.

То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.

Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.

Что такое переменный ток и чем он отличается от тока постоянного

Построение графика переменной ЭДС

Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.

Построение графика переменной ЭДС

Рисунок 3. Построение графика переменной ЭДС

Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.

В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.

При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).

По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.

Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).

При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.

График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.

Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)

На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.

Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.

Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.

Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .

Что такое переменный ток и чем он отличается от тока постоянного

Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.

Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.

Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .

Период, амплитуда и частота — параметры переменного тока

Переменный ток характеризуется двумя параметрами — периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.

Кривая синусоидального тока

Рисунок 4. Кривая синусоидального тока

Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.

Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.

Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.

Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.

Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.

Мы прежде всего обратили внимание на амплитудное значение тока, однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.

Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.

i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.

Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.

Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.

Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.

Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.

Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f

Частота переменного тока измеряется единицей, называемой герцем.

Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.

Итак, мы определили параметры переменного тока — период, амплитуду и частоту , — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.

При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .

Круговая частота обозначается связана с частотой f соотношением 2пиf

Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.

Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна 360°f.

Итак, мы пришли к выводу, что 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2пи радиан, где пи=3,14. Таким образом, окончательно получим 2пиf. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Переменный и постоянный ток – в чем отличие?

Электроток – упорядоченное движение позитивно заряженных частичек, в качестве которых, в зависимости от среды, могут выступать электроны, ионы, катионы и анионы, обладающие определенным статичным зарядом.

Постоянный ток всегда «протекает» в одностороннем направлении: в стальных проводах от «плюса» к «минусу». Что касается переменного тока, то судя из названия, понятно, что он подвергается изменениям. Каким образом происходят изменения?

В домашних розетках «находится» ток, подвергающийся синусоидальным колебаниям при значении частоты 50 Гц. Если обратить внимание на электрическую цепь обычной лампы накаливания, то здесь получаем:

Постоянный и переменный ток

  • электроны в поле постоянного тока всегда передвигаются от «-» к «+»;
  • в случае переменного, движение определяется частотой генератора – то есть, при частоте тока 50 Гц курс потока электронов изменится 100 раз за 1 секунду. То есть, по сути, в розетке плюс и минус поменяются местами 100 раз. Поэтому, независимо от того, какой стороной вставляется вилка в розетку, техника или бытовой прибор будет нормально работать.

Физический смысл переменного тока выражается по синусоидальному закону: от «0» до максимального положительного значения, далее до «0» и отрицательного максимума амплитуды. При переменном токе также изменяется его заряд и полярность в диапазоне 100-0-100%. Кроме этого ток переменный легче преобразить.

Источники тока

Первым человечество узнало об электросетях постоянного тока, но из-за конструктивной сложности генератора, с ними возникали постоянные проблемы и частые поломки. Конструкция же генератора переменного тока намного проще, что сказывается на удобстве в эксплуатации.

Для того чтобы добиться одинаковых параметров мощности, нужно повышенное напряжение и малый ток или наоборот. Чем больше сила тока, тем потребуется большее сечение провода – а это затратно. К примеру, по проводам малого сечения можно передавать до 1,5 млн Вольт электроэнергии при величине силы тока в 100А и минимальных потерях. Далее, подстанция «заберет» до 500 тысяч Вольт при силе тока 10А и «отдаст» в сеть 10 тысяч Вольт при 500А. Потом, районные электрические трансформаторные станции преобразуют напряжение на 220В или 380В для потребительских целей при величине силы тока 10 тысяч Ампер.

Похожий принцип действия, но в противоположную сторону имеет стационарный компьютер. ПК сначала преобразует переменный в постоянный ток, а далее посредством БП (блок питания) снижает параметр напряжения до требуемой для правильной работы всех узлов ПК величины.

Для справки. А знаете ли Вы, что в конце 19 столетия, процесс электроснабжения населенных пунктов мог пойти по другому пути. Изобретатель Томас Эдисон продвигал в массу значимость постоянного тока. И если бы не эксперименты выдающего ученого Никола Тесла, обосновавшего эффективность переменного тока, то все в мире могло пойти по абсолютно другому пути. Сербский ученый Тесла первым разработал многофазный генератор, выдающий переменный ток, что позволило доказать превосходство переменного тока над источниками постоянного электричества.

Изобретатели тока

Устройства постоянного напряжения:

  • различные виды батареек;
  • аккумуляторы разных типов;
  • генераторы;
  • преобразователи и выпрямители;
  • приборы для аварийного освещения.

К переменным относятся:

  • генераторы;
  • повышающие и понижающие трансформаторы;
  • стационарные электро розетки.

Огромный выбор оборудования и комплектующих для монтажа электрических сетей переменного и постоянного типа представлен в интернет-магазине «Пауэрлюкс». Наши специалисты подберут электротехническую продукцию под ваши конкретные задачи уже сейчас. Звоните!

  • Бесплатная доставка по Украине от 3000 грн.

при условии 100% оплаты

В чем разница между переменным и постоянным током — Часто задаваемые вопросы | Производитель морских панелей переключателей, предохранителей и автоматических выключателей | YIS Marine

YIS Marine — это производитель высококачественных морских продуктов, таких как морские и лодочные изделия, панель переключателей, светодиодные лампы, выключатели, вилки, розетки, клеммные колодки и шинные разъемы из Тайваня, Китая с 1992 года. YIS Marine — профессиональный производитель, посвященный предоставлению высококачественной морской электротехники и электроники. За счет разработки и производства внутри компании и контроля качества в головном офисе в Тайване, мы можем предложить высококачественные морские продукты по конкурентоспособным ценам.

  • Главная страница
  • Компания
    • Обзор компании
    • История и развитие
    • Сертификация и патенты
    • Выставка
    • Privacy Policy
    • Privacy Policy for App
    • Переключатели
      • Мембранный пульт управления с пультом дистанционного управления
      • C-7 Алюминиевая водонепроницаемая панель переключателей
      • C-7 Изогнутая водонепроницаемая панель переключателей
      • Панель переключения из углеродного волокна
      • Современная панель переключателей с тумблером
      • Панели переключателей волнового дизайна
      • Водонепроницаемые панели переключателей C-7 Streamline
      • Водонепроницаемые панели переключателей C-6
      • Новая классическая панель переключателей (редизайн 2015 года)
      • Бакелитовая панель переключения
      • Другие панели переключения
      • Аксессуары для панели переключения
      • Серия главных выключателей аккумулятора YIS
      • Реле чувствительности к напряжению
      • Блоки предохранителей и шинопроводы
      • Предохранители
      • Выключатели автоматические
      • Панельные держатели предохранителей
      • Встроенные держатели предохранителей
      • Модульный предохранительный блок и шинопроводы с усиленной конструкцией
      • Обычные прикуриватели
      • Специальные разъемы
      • Разветвители розеток
      • Гнезда для зажигалок
      • Гнезда для зарядки USB
      • Индикаторы батареи
      • Накладные монтажные розетки CurvMount
      • Другие штекеры и розетки
      • Семейство гнезд и аксессуаров 1-1/8”
      • Автомобильные прикуриватели
      • Переключатели для автомобилей морского класса
      • Морские переключатели тумблера
      • Металлические кнопочные выключатели
      • Потолочные и направленные светильники WaveLED
      • WaveLED настольные светильники для чтения
      • Подсветка вежливости
      • Аккумуляторные зажимы для автомобилей и аксессуары
      • Формованные прицепные разъемы
      • Автомобильные разъемы и гнезда для антенн
      • Новости
      • Новый продукт
      • Что такое класс защиты IP
      • Как происходит тестирование продуктов для определения рейтинга IP
      • Как добавить вторую батарею для каравана или грузовика-каравана с VSR
      • Что такое VSR и как установить VSR
      • Функция AFD (отключение поля генератора) для переключателей батареи
      • Что означает «Защита от искрения» на морском электрическом изделии?
      • Как выбрать подходящий предохранительный блок для вас
      • Светодиодные внутренние освещения для лодок и караванов — следующее поколение морского освещения
      • Введение в терминологию светодиодов — цветовую температуру, световой поток (люмены), освещенность (люксы) и типы светодиодов
      • Внутренние осветительные приборы для морских судов и караванов
      • В чем разница между переменным током и постоянным током
      • Что такое сертификат UKCA
      • Переключатели
      • Управление энергией
      • Аксессуары на 12/24 вольта
      • Морские выключатели высокого качества
      • Светодиодные огни для лодок
      • Головной офис в Тайване
      • Китайская фабрика

      В чем разница между переменным и постоянным током | Производитель морских панелей переключателей, предохранителей, автоматических выключателей | YIS Marine

      Переменный ток и постоянный ток | YIS Marine — профессиональный производитель, посвященный предоставлению высококачественной морской электротехники и электроники. Благодаря разработке и производству внутри компании и контролю качества в головном офисе на Тайване, мы можем предложить высококачественные морские продукты по конкурентоспособным ценам.

      • Home
      • /
      • Технические статьи
      • /
      • В чем разница между переменным током и постоянным током

      Переменный ток и постоянный ток

      В чем разница между переменным током и постоянным током

      AC означает «переменный ток», а DC означает «постоянный ток».

      Основное отличие между переменным и постоянным током заключается в направлении движения электрического заряда. В постоянном токе электрический заряд движется в одном направлении, от положительного к отрицательному полюсу батареи или источника питания. В переменном токе направление электрического заряда периодически меняется, осциллируя туда и обратно между положительными и отрицательными полюсами источника питания.

      Еще одно важное отличие между переменным и постоянным током заключается в том, что переменный ток легко может быть преобразован в различные уровни напряжения с помощью трансформаторов, в то время как постоянный ток не может. Это делает переменный ток более подходящим для передачи электроэнергии на большие расстояния, так как его можно передавать на высоких уровнях напряжения, а затем понижать до более низких уровней напряжения для использования в домах и предприятиях. Постоянный ток, с другой стороны, более подходит для некоторых типов электронных устройств, которым требуется постоянное и стабильное питание.

      Наконец, переменный ток может быть сгенерирован более эффективно и по более низкой стоимости, чем постоянный ток, что является еще одной причиной его использования для распределения электроэнергии в электрических сетях по всему миру.

      В чем разница между переменным и постоянным током | Более 20 лет производства морской электротехники и аксессуаров | YIS Marine

      Основанная в Тайване, Китай с 1992 года, Yih Sean Enterprise Co., Ltd. является производителем морской электро- и электронной продукции. Их основные морские и лодочные продукты включают аксессуары 12/24V, панели переключателей, предохранители, автоматические выключатели, выключатели и освещение, которые обслуживают более 200 клиентов по всему миру в соответствии с международными стандартами безопасности.

      YIS Marine — профессиональный производитель, посвященный предоставлению высококачественной морской электротехники и электроники. Благодаря разработке и производству внутри компании и контролю качества в головном офисе на Тайване, мы можем предложить высококачественные морские продукты по конкурентоспособным ценам. С более чем 20-летним опытом производства морских продуктов, панелей переключателей, светодиодных ламп, выключателей, розеток, клеммных колодок и шинных разъемов на Тайване.

      YIS Marine предлагает клиентам высококачественные морские и лодочные электротехнические изделия, обладающие передовой технологией и 20-летним опытом. YIS Marine гарантирует удовлетворение потребностей каждого клиента.

      Свяжитесь с нами для получения дополнительной информации.

      logo_footer

      YIS Marine — профессиональный производитель, посвященный предоставлению высококачественной морской электротехники и электроники. Благодаря разработке и производству внутри компании и контролю качества в головном офисе в Тайване, мы можем предложить высококачественные морские продукты по конкурентоспособным ценам.

      Наш адрес

      No.134, Yong’an Rd., Annan Dist., Tainan City 70969, Taiwan 886-6-3570966 886-6-3570166 sales@yismarine.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *