Как объединить микроволновку с трансформатором теслы
Перейти к содержимому

Как объединить микроволновку с трансформатором теслы

  • автор:

Трансформатор Тесла

Трансформатор Тесла — источник высокочастотного высокого напряжения, позволяющий проводить красивые и эффектные эксперименты. Он был изобретён в 1896 г. Николой Тесла и использовался им как для доказательства, что переменный ток значительно менее опасен для человека, чем постоянный, так и для опытов по передачи энергии на расстояние без проводов. Первые трансформаторы работали на частоте 30..40 кГц, что было обусловлено возможностью электромашинных генераторов. Данный фактор и обуславливал большие размеры трансформатора, так как он работает на резонансной частоте вторичной обмотки, которая зависит от её размеров. Повысив частоту в разы можно получить рабочее устройство прямо в квартире.

Особенность представленного в статье устройства для питания трансформатора Тесла (тип SSTC) — возможность формирования кроме разрядов (стримеров) также и звуковых эффектов, за что в схеме отвечает микроконтроллер (формирует импульсы запуска длительностью 1 мс и паузы длительностью 8, 10, 12, 14 и 20 мс в зависимости от выполняемой программы 1..5 (переключение последовательно кнопкой SB1)). В микроконтроллер можно «зашить» при желании и простейшую мелодию.

схема для питания трансформатора Тесла

Трансформатор Т1 (вторичная обмотка 20..30В с током не менее 3А) с выпрямителем по схеме удвоения напряжения на диодах VD1, VD2 питает напряжением 40..60В каскад на полевом транзисторе VT1. Трансформатор Т2 питает микроконтроллер ATiny13, генератор с регулируемой частотой импульсов в диапазоне 300-900 кГц на микросхеме 74HC14 (КР1564ТЛ2) и драйвер полевого транзистора DA3 UCC37322P. При желании на оставшихся свободными элементах DD1 можно собрать генератор импульсов заменяющих микроконтроллер.

Транзистор VT1 IRFP460 необходимо подбирать по условию: допустимое напряжение сток-исток не менее 200В, максимальный ток стока — 10 А.

Трансформатор Тесла представляет собой две катушки:

I — намотана изолированным монтажным проводом диаметром 2,5..4 мм на каркасе диаметром 110 мм и содержит 5 витков, II — намотана на каркасе диаметром 7-8 см и содержит примерно 1000 витков в один слой эмалированным проводом диаметром 0,2 мм. Верхний конец обмотки II снабжен медным заостренным штырём. Трансформатор Тесла (примечание: индуктивность вторичной обмотки и её собственная ёмкость образуют колебательный контур) работает на эффекте резонанса, за счет которого и происходит многократное повышение напряжения по сравнению с расчетным на основе отношения количества витков обмоток. Основной фактор, определяющий резонансную частоту вторичной обмотки — её размеры. Методика измерения частоты описана в источнике, но её можно и оценить использую программу для расчета трансформатора Тесла, например, VCTesla.

плата блока питания трансформатора Тесла

Микроконтроллер прошивается программой и конфигурируется согласно таблицы (точнее, такие настройки должны быть с завода по умолчанию):

конфигурация МК

В журнале Радио 11/2010 и 12/2010 автор опубликовал статью Трансформатор Тесла — разновидности, эксперименты, где привел описание еще двух типах конструкций: SGTC (на основе искрового разрядника) и VTTC (с генератором на электронной лампе).

Генератор типа SGTC на сегодняшний день можно сделать используя трансформатор из микроволновой печи:

схема генератора для трансформатора Тесла типа SGTC

Конденсаторы С1-С4 также берутся из микроволновки, желательно, чтобы они содержали встроенные резисторы. Дроссель L1 от балласта для люминесцентных ламп, расстояние между электродами разрядника FV1 — 2 мм. Катушка I трансформатора Тесла аналогична конструкции описанной вначале, только сделана в виде расширяющегося конуса, катушка II на резонансную частоту — 600 кГц, конденсаторами С5-С8 настраивают на туже частоту последовательный колебательный контур.

Обратите внимание, что прикасаться к элементам устройства можно только после отключения трансформатора от сети и разрядки всех конденсаторов!

Ламповая катушка Тесла

Катушка Тесла на лампе
Ламповая катушка (VTTC) является самым простым устройством по сборке, из всех видов трансформаторов Тесла. В качестве коммутирующего элемента первичного контура выступает генераторная радиолампа. В данной статье рассматривается катушка Тесла собранная на радиолампе ГК-71, мощность лампы составляет 125Вт, в свое время мне достались две лампы из разобранного медицинского электрокоагулятора, после чего я решил собрать катушку.

Ниже представлена схема катушки Тесла:
Схема катушки Тесла
T1 – высоковольтный трансформатор, который используется в микроволновых печах, коротко называется MOT (Microwave Oven Transformer). Эти трансформаторы широко применяются для постройки искровых (SGTC), а также ламповых (VTTC) катушек Тесла. Трансформатор СВЧ Средняя мощность такого трансформатора составляет 700 Вт, напряжение вторичной обмотки равно 2200В, электропрочность обмоток оставляет желать лучшего. В целях экономии материалов вторичную обмотку мотают без использования межслойной изоляции, кроме того сильно завышают индукцию в магнитопроводе, вследствие чего под нагрузкой трансформатор быстро нагревается, часто происходят пробои вторичной обмотки.

MOT представляет большую опасность, обращаться с ним нужно осторожно, сила тока вторичной обмотки (высоковольтная обмотка) достигает 1А, поражение электрическим током от MOT-а может привести к трагическим последствиям.

На конденсаторе C1 и диоде VD1 собран однополупериодный удвоитель напряжения, таким образом, на выходе получаем напряжение около 6 кВ без нагрузки. Номинальное рабочее напряжение анода лампы ГК-71 составляет 1,5кВ, в катушке лампа работает в перегруженном режиме. В моем варианте C1 состоит из 4-х конденсаторов марки МБГП-1, 4мкф х 1600В. Диод VD1 состоит из 12-ти последовательно соединенных диодов 1N5408, с 4-мя выравнивающими резисторами по 5,1Мом, обратное напряжение диодной сборки составляет 12кВ, номинальный ток 3А.

Схема катушки представляет собой ламповый автогенератор, первичный контур состоит из конденсатора C2 и первичной обмотки L1, L2 – обмотка обратной связи, L3 – вторичная обмотка. Теперь о конструкции обмоток, первичная обмотка вместе с обмоткой обратной связи (ОС) намотаны на цилиндрической оправе диаметром 11см, причем обмотка ОС расположена над первичной обмоткой и выполнена подвижной для последующей настройки режима работы катушки. Первичная обмотка состоит из 40 витков медного провода ПВ1 диаметром 1,6мм, обмотка ОС состоит из 22 витков медного эмалированного провода диаметром 1мм. На витки первичной обмотки напаяны отводы (в местах пайки предварительно удалена изоляция) для более точной настройки резонанса. Вторичная обмотка намотана на оправе диаметром 5см, диаметр провода составляет 0,18мм, высота намотки составляет 30см, итого около 1660 витков, обмотка покрыта слоем эпоксидного клея. Сверху на оправу обмотки установлены два алюминиевых диска от жесткого диска и терминал с острием, который соединен с выводом обмотки, диски играют роль конденсатора вторичного контура. В общем, это типовая конструкция для данной лампы, можно конечно изменить параметры обмоток в небольших пределах.

Лампа ГК-71

Контурный конденсатор C2 керамический марки К15У-1, емкостью 470пФ, номинальное напряжение 15кВ, конденсаторы такого типа лучше всего подходят для работы в катушке Тесла, но также подойдут пленочные, марки К78-2.
В цепи обратной связи установлен конденсатор C4 марки К78-2, L4 – железный дроссель, который используют для запуска ламп дневного света на 40Вт. Резистор R1 собран из 3-х параллельно соединенных резисторов ПЭВ-25, общая мощность составляет 75Вт, они ощутимо нагреваются во время работы катушки. Конденсатор C3 марки К15-5.

Для питания накала лампы используется трансформатор с выходным напряжением ~22В и током 3А.

Перед включением катушки необходимо заземлить нижний вывод вторичной обмотки, я подключил его к железной трубе водоснабжения в квартире. При включении катушки сначала необходимо подать напряжения на накал лампы, затем подать высокое напряжение, для этих целей я установил два выключателя. Подача высокого напряжения без предварительного разогретого накала может привести к поломке генераторной лампы.

Если все элементы исправны, то катушка должна сразу заработать, при этом длина разряда может оказаться небольшой, что указывает на несовпадение частот первичного и вторичного контура, проще говоря, катушка не в резонансе. Для достижения максимальной длины разряда необходимо найти резонансную частоту, настройка производится изменением индуктивности первичной обмотки, путем последовательного подключения к отводам обмотки, у меня резонанс наблюдался примерно на 30-м витке, в пределах 2-х витков особой разницы в длине разряда незаметно. Также можно подбирать емкость конденсатора C2, еще один вариант это изменение емкости конденсатора вторичного контура путем установки различных металлических (желательно не магнитных) предметов на верхний конец вторичной обмотки. Ориентироваться следует по формуле частоты колебаний электрического контура: частота обратно пропорциональна индуктивности и емкости элементов контура. Положение обмотки ОС по отношению к первичной обмотке тоже влияет на длину разряда, в моем случае при увеличении расстояния разряд увеличивался, можно еще поиграться с номиналами элементов цепи обратной связи (R1, C3), но я не заметил особого влияния.

Во время работы катушка издает мягкий гудящий звук, длительное включение не рекомендуется из-за сильного нагрева лампы, Максимальная длина разряда в моей катушке составила примерно 20-23см, но это не предел, описанная конструкция при правильной настройке позволяет получить разряды длиной до 40см.
Катушка Тесла вид спередиВнешний вид катушки Тесла Фото разрядов

Как сделать мощную лестницу Иакова из трансформатора от микроволновки своими руками

Желание написать данный пост побудила вот это фотография со студенческой конференции технического ВУЗа.

— Видел, что студенты показывали на конференции? — спросил товарищ, показывая фотографию.
— Ничего себе! Это же полный *****! И ты там был?
— Да, я к ним подходил, разговаривал, но они не стали меня слушать. Что я мог сделать.

И действительно, а что можно поделать. Поговорив с друзьями было решено написать этот пост, в котором расскажем немного про “Лестницу Иакова”, собственный опыт изготовлении этих установок, и поясним, почему эта фотография вызвала столько эмоций.

Лестница Иакова — установка, состоящая из высоковольтного блока питания и двух электродов, расположенных в вертикальной плоскости под углом друг к другу. Так что снизу расстояние между ними меньше, чем сверху, и было выбрано в зависимости от напряжения источника питания, чтобы пробой воздуха между электродами возникал самостоятельно. Во время ее работы можно наблюдать образование и перемещение электрической дуги с нижней (снизу) к верхней части электродов. Этот эффект объясняется тем, что дуга состоит из плазмы, разогретой до 5000-7000° C, она нагревает воздух вокруг себя и благодаря конвекционным потокам разогретого воздуха поднимается вверх, утягивая за собой дуговой шнур. Если сфотографировать с большой выдержкой взлетающий разряд, можно получить необычную фотографию (см. выше), которая будет напоминать лестницу из библейской истории:

Пейзаж со сном (из сна) Иакова, Михаэль Вильман, ок. 1691

Лестница Иакова эффектно демонстрирует целую цепочку физических явлений. И я не могу оставаться равнодушным к этой установке, поскольку люблю физику, со студенческих времен являюсь убежденным популяризатором науки, а последние годы разрабатываю экспонаты для музеев науки. Некоторые читатели хабра наверное помнят, что нами была сделана самая большая катушка Тесла в Украине. Кто читал статью, заметил, что больше всего внимания было уделено не столько изготовлению самой катушки, сколько вопросам безопасности.

На фотографии в начале поста мы видим, как оголенные электроды находятся в прямом доступе участников конференции. Любой кто случайно (из любопытства) прикоснется к электродам скорее всего умрет. Впрочем, лучше меня о явных и неочевидных опасностях высоковольтных установок расскажет Сергей Александрович, хоббист с огромнейшим опытом изготовления катушек Тесла, лестниц Иакова, ионофонов, умножителей напряжения, и просто большой любитель трансформаторов всех форм и размеров 🙂

На хабре он под ником Frost273, это, кстати, он автор самой большой катушки Тесла в Украине. Дальше будет его текст.

Можно уверенно сказать, что каждый современный человек, в той или иной ситуации сталкивался с явлениями электричества, и подчас не тогда, когда сам того желал. Если взять в рассмотрение юных (если уже не телом, то душой) и бородатых (есть здесь девушки увлекающиеся электротехникой?) технарей, а именно их в первую очередь привлечёт заголовок статьи, то не найдётся такого, который не испытал на себе удар электрическим током, будь то разобранный источник питания, или не разрядившийся конденсатор, факт остаётся фактом. А раз ты, друг, сейчас читаешь эту статью, значит ты всё ещё жив, и можешь поведать о своём опыте в комментариях.

Однако с некоторыми работающими электроустановками невнимательность становиться последней допущенной в жизни оплошностью. К подобному опасному классу устройств относиться и эксперимент с изготовлением лестницы Иакова.

Особенно лестницы Иакова, “в сердце” которой находиться высокотоковый источник питания, накшталт трансформатора от микроволновки, который может выдать под 500 мА (0,5 ампера) в зависимости от модели микроволновой печи.

А теперь, на секундочку, таблица, чтобы освежить память по такому всем знакомому предмету как ОБЖ.

Воздействие электрического тока на человека

И я готов подтвердить, что даже столь малые величины протекающего по пальцам переменного тока величиной в 0,001 ампер (1 мА) мало кому способны показаться приятным ощущением. И тем больше неприятным будет это ощущение, чем внезапнее оно возникнет. Это я выяснил в свою бытность преподавателем в высшем учебном заведении, когда имел желание и дерзость уразнообразить уроки электротехники для студентов 3 курса путём проведения прикладных экспериментов с электричеством.

Возвращаясь к таблице, можно увидеть, что при любом протекающем по телу переменном токе больше 15 мА имеется угроза здоровью и жизни здорового человека. Человек же, у которого имеются пороки сердца уже находиться в группе риска при меньших величинах.

Хочу также заметить, что разброс величин в таблице, к примеру, для токов неотпускания (10. 15 мА), зависит от совокупности дополнительных пяти факторов, помимо величины самого тока:

  • напряжение;
  • сопротивление кожного покрова человека (здесь также влияет наличие повреждений кожи и площадь контакта);
  • длительность воздействия (счёт идёт на доли секунды);
  • частота электрического тока;
  • путь протекания по телу.

Я хотел донести мысль, что в этой теме нет места романтизации смерти от удара электрическим током. Экспериментатор с вероятностью 100% не станет доктором Манхэттеном.

Да и скорее уже никем не станет, хотя это не точно. Поскольку шанс остаться живым, хоть и мал, но есть. А вот большая вероятность чего имеется, так это:

  1. Испытать нарушения в работе сердечно-сосудистой системы, органов дыхания, нервной системы.
  2. Получить электроожог (гармоничное сочетание теплового и химического ожогов).
    При ударе электрическим током сопротивление нашего тела играет нам не на руку, поскольку достаточно большая величина протекающего тока в тканях превращается в тепло, которое вызывает коагуляционный некроз в точках входа и выхода на коже, а также в мышцах и кровеносных сосудах, по которым протекает ток. Что в свою очередь приводит к развитию тромбоза, часто в местах, удалённых от поверхности тела, что значительно замедляет процесс регенерации тканей. Да ещё и сама плазма крови подвергается электролизу при протекании тока, что делает её непригодной для выполнения своих прямых функций транспортировки кислорода.

К тому же есть опасность воспламенения одежды при контакте с электрической дугой. А уж представьте как неудобно тушить свою одежду парализованными конечностями.

Фотография поражённого электрическим током участка тела человека (присутствует цензура)

Не следует ожидать, что электрическая дуга оставит на поверхности тела красивый ожог в форме фигуры Лихтенберга, поскольку такая форма поражения возможна только при ударе статическим электричеством, по примеру грозовой молнии.

Теперь, читатель, взвесь на одной чаше весов своё любопытство, а на второй перечисленные выше особенности лестницы-Иакова-строения. Не безопаснее ли посмотреть видосик с электричеством на уютном ютубчике?

Подготовка к сборке

Если ты все же твердо намерен попробовать свои силы в изготовлении этой замечательной установки, то вот первые необходимые пункты:

Пункт 0 (главный). Не использовать MOT
Пункт добавлен по рекомендации Neuromantix, lorc и Firelander

МОТ (Microwave Oven Transformer, или трансформатор от микроволновой печи) — невероятно опасное устройство. Не используй его никогда! Применение других источников высокого напряжения с меньшим током, значительно снизит вероятность кого-то убить. Тем не менее опасность нанести непоправимый вред здоровью сохраняется.

Пункт 1. Подбираем изоляцию

Это может быть не очевидно, но привычные изоляционные материалы, которые прекрасно справятся с напряжениями до 500 В перестают работать при киловольтах. При высоких напряжениях проводниками может стать бумага, дерево, фанера, ДСП, ДВП, картон, и даже пыль на поверхности текстолита! Провода также необходимо подбирать с изоляцией рассчитанной на соответствующие напряжения. Так, кабель от удлинителя категорически не подходит!

Пункт 2. Подготавливаем помещение

Собирать установку необходимо на сухом не горючем не токопроводящем полу. Вокруг установки должно быть пустое пространство, чтобы в случае падения электродов никто и ничто не пострадало. Вот поучительное видео, где установка собиралась на столе и упала прямо на экспериментатора:

К счастью из-за хлипкого крепления электродов, цепь разорвалась и герой ролика не успел умереть. Впрочем так везет не всем, совсем недавно проскакивала новость, как школьника убило при самостоятельной сборке лестницы Иакова в гараже. Также помещении не могут находиться ни кошки, ни собаки, ни птицы, ни другие животные. Они могут в самый неподходящий момент зацепить/завалить установку, отвлечь, или банально полезть к проводам.

А самое главное, чтобы никто из посторонних не имел физической возможности попасть в помещение, и не только на период работ, но и на время, пока там находится установка.

Пункт 3. Корпус

Необходимо заранее продумать корпус конструкцию так, чтобы никто физически не смог прикоснуться к электрическим компонентам работающей установки, особенно к электродам. Когда мы делали первую лестницу Иакова для центра науки, то поместили ее и за решеткой с замком и за стеклом:

Когда нет отдельного помещения, мы собираем установку в защищенном корпусе, с выполнением следующих правил:

  1. Используется источник с током до 30 мА.
  2. Установка удалена от наблюдателей, они не могут прикоснутся к корпусу.
  3. Рядом с установкой всегда присутствует ответственное лицо.

Пункт 4. Не работать в одиночку

Во-первых необходимо, чтобы при всех тестовых запусках присутствовал человек готовый обесточить установку и квалифицированно оказать неотложную медицинскую помощь. Во-вторых должно быть совершеннолетнее лицо, готовое взять на себя ответственность за пожар, увечья, или даже смерть, которые могут возникнуть при неблагоприятном стечении обстоятельств.
Возможно, это не полный список, приглашаю дополнять его в комментариях, важные пункты я добавлю в статью.

Схемы, и инструкции по сборке

Прости дорогой читатель, я обманул тебя — никаких инструкций и схем не будет, и мне совсем не стыдно. Уверен, что это все ты легко найдешь на просторах интернета. Конструкция настолько проста, что ее сможет собрать любой школьник. Однако, прежде чем приступать к сборке, спроси себя, готов ли ты к тому, что может пострадать твой близкий человек?

P.S.
Да, заголовок желтый, а пост не несет новой информации для целевой аудитории Хабра. Тем не менее, надеюсь, что статья займет достойное место в поисковой выдаче и будет прочитана многими энтузиастами, а возможно даже спасет от смерти начинающего экспериментатора.

UPD 1: Первые выводы по опросу и комментариям

По состоянию на 23:59 14.06 результаты опроса следующие:

Может показаться, что не так все и страшно — людей бьет высоким напряжением и все живы здоровы, тем более, что 77 комментариев это подтверждает. Однако, это не совсем так. Потому что имеет место ошибка выжившего, ведь только выжившее смогли рассказать о своем опыте. Более того, я внимательно прочитал комментарии и не смог найти ни одного случая, когда кого-то ударило высоким напряжением по-настоящему. В подавляющем большинстве в комментариях делятся опытом контакта с 100-220 В. Только некоторые испытали очень кратковременный удар от разряда конденсатора, что не так страшно, как непрерывный контакт с вторичкой МОТа.
Добавлю, что только один знакомый мне человек имел опыт взаимодействия с высоким напряжением. Когда мы были детьми, он пробрался на подстанцию…
… Он умирал очень болезненно от огромного количества ожогов в течении минут 15. И выглядело это ужасно. Возможно, поэтому я болезненно отношусь к жесткому нарушению ТБ.

Ламповая катушка Теслы

Сегодняшний пост будет посвящен высокому напряжению. Ламповый трансформатор Тесла является самой тихой конструкцией из всех существующих вариантов. Тут, в качестве генератора высокочастотных колебаний используется мощный пентод ГК-71, благодаря которому можно получать красивые, достаточно длинные разряды в воздухе. В ходе данной работы рассмотрим основные элементы конструкции, узнаем секреты по настройки схемы и визуализируем сигнал с высоковольтной обмотки на экран советского осциллографа. Дальнейшая работа будет заключаться в компактном размещении всех элементов в одном корпусе. В общем всё как вы любите. Простота, надежность и небольшая стоимость делает данную катушку доступной каждому, кто захочет её собрать.

Прелесть ламповой катушки Тесла заключается в том, что одну часть деталей для неё можно достать из обычной микроволновки, а вторую из ближайшего магазина электрики. С пентодом может возникнуть проблема, вещь старая и давно не выпускается, но тот кто ищет — тот всегда найдет. В дальнейшем вы поймете, что его можно заменить на любую другую лампу похожей конструкции.

ГК-71 выбран из-за эстетической красоты и небольшой стоимости. Кто не обратил внимания, анод в этой вакуумированной пробирке полностью состоит из графита, хорошая реализация для рассеивания больших мощностей, по паспортным данным эта цифра составляет 250 Вт. Номинальное анодное напряжение составляет 1.5 киловольта. Максимальная частота 20 МГц.

Данный экземпляр был выпущен в 1981 году. Достался новым прямо из коробки. Непрерывное время работы по документам, составляет 1000 часов. Это примерно 42 дня. В год, на постоянно работающем устройстве, необходимо сменить 8 таких товарищей. По некоторым подсчётам, выпущенных в свое время Ламп ГК-71 хватит еще минимум лет на 200.

Накал — это та часть которая вдыхает жизнь в любую радиолампу. Напряжение для пентода ГК-71 составляет 20 вольт, но ток при этом должен быть не меньше 3.5 ампер.В общем накал жрет 70 Вт. На рынке за символическую сумму был приобретен отечественный трансформатор ТН54-220-50. При правильном подключении обмоток с него можно получить 85 Вт без каких-либо финансовых затрат.

Следующий элемент — это высоковольтный трансформатор от микроволновки, буржуи называют его МОТ. Напряжение на его выходе составляет 2 киловольта, ток порядка 1 ампера. Довольно мощная и опасная вещь, может отправить вас на встречу к создателю, потому не стоит увлекаться.

Дальше идёт краткий перечень элементов, необходимых для сборки конструкции:
2 масляных конденсатора от той же микроволновки, напряжение 2.1 кВ, емкость 0.95 мкФ. Диодная сборка HYR-1x, её максимально допустимое напряжение 12 кВ, ток 500 мА, по паспорту способен выдержать импульсный ток до 30 ампер. Настоящий зверь в своем роде. Резисторы типа ПЭВ-на 10-20 Вт, можно использовать любые другие аналоги буржуйского производства.

Резонансный высокочастотный конденсатор типа КВИ-3, напряжение может варьироваться от 5 до 20 кВ, для настройки было закуплено несколько таких товарищей с разным номиналом ёмкости на борту. Для намотки индуктора был приобретен многожильный медный провод типа ПВС, сечение 1.5 квадрата. Длина порядка 16 метров. Катушка связи имеет другой цвет и длину 10 метров. Все провода взяты по длине с запасом.

Рубильники коммутирующие силовые части, взяли с допустимым током до 15 ампер, не спрашивайте зачем так много, запас карман не жмёт.

Теперь вторичная высоковольтная обмотка, она же «резонатор». Намотка этой детали требует много времени и терпения. Тут использован медный лакированный провод толщиной 0.2 мм, мотается виток к витку на картонной основе от пищевой пленки. Диаметр трубы 55 мм. Высота намотки получилась 35 см. Витки при этом не должны пересекаться и накладываться друг на друга.

После намоточных процедур результат следует покрыть слоем диэлектрика во избежание пробоя обмотки. Эпоксид наносится в два слоя для надёжности. В результате выйдет глянцевая, переливающаяся на свету труба, которая отнимет часть вашей драгоценной жизни. Второй дубликат катушки был намотан на пластиковой канализационной трубе диаметром 50 мм. ПВХ более надежный диэлектрик, в этом скоро убедимся. Каркас для индуктора был взят из того же картона только большего диаметра, примерно 80 мм.

Для проведения дальнейших работ, необходимо как можно компактней разместить трансформаторы, конденсаторы и прочую ерунду на какой-то крепкой основе. Листы ДСП давно валяются без дела, потому следует разметить их, и пустить в ход электролобзик, работа и звуки которого благородно влияют на жизнь ваших соседей, особенно это актуально по выходным дням.

Конструкция будет двухэтажная. Снизу разместятся трансформаторы с конденсаторами, а сверху разместим Пентод и саму катушку Тесла. Долго думал как скрепить первый этаж со вторым, решил использовать деревянные чепки. Надёжность тут конечно покраснела и пошла выпивать вслед за совестью. Желе какое-то. Надеваем розовые очки и выпиливаем отверстие под радио лампу. Затем с обратной стороны делаем отверстия под провода.

Теперь про индуктор. Сейчас мы точно не знаем сколько нужно витков, мотаем 40, при настройке его всё равно придётся отматывать в меньшую сторону для поиска резонанса. Обмотка обратной связи мотается в одну сторону с индуктором. Количество витков в два раза меньше, то есть 20. Такое соотношение встречается во многих ламповых катушках Тесла.

Момент который не очень понял. В некоторых схемах обмотка связи располагается в нижней части трансформатора Тесла, где развиваются наибольшие токи, а в некоторых сверху над индуктором. Какой вариант расположения лучше мне не известно, но в данной схеме она размещается сверху.

Панельку для установки пентода нам найти не удалось, довольно редкая вещь, потому альтернатива крепления — клеммная колодка для провода с диаметром отверстий 4 мм. Зажимы в ней отлично фиксируют ножки пентода. В качестве декоративной подставки использована фанера, которая была магнитом на двери холодильника.

Теперь время подсоединить провода к накальному трансформатору, и посмотреть всё ли работает. Подаем питание и наблюдаем за показаниями амперметра. 3 ампера, как и паспорт предписывал. По мере прогрева, потребление тока незначительно падает. Камера увы не смогла передать всей красоты раскаленных ниточек внутри этого стеклянного баклажана. Здоровенное лампище… Вот же ж умели делать!

Вся схема устройства довольно простая и выглядит примерно так: переменное высокое напряжение с мота выпрямляется через диод и заряжает конденсаторы от микроволновки, соединены они последовательно для увеличения рабочего напряжения. В этом случае суммарная ёмкость выходит пол микрофарада. Колебательный контур индуктора подключён к аноду лампы через дроссель, состоящий из 10 витков. Все управляющие сетки лампы ГК71 соединены вместе, с этого момента пентод превращается в триод. Схема автогенератора начинает работать при очень малых напряжениях на входе мота. Конденсатор в 2.2 нФ на выходе накального трансформатора служит для фильтрации наводок и высокочастотных выбросов, хотя первое = второе, второе = первое, как-то так. Обращаем внимание на подключение обмоток в первичном контуре. Точка — это нижний вывод обмотки.

В принципе сборка получилась довольно компактной. Её работу запросто можно демонстрировать на уроках физики, вспоминая жизнь того чувака, благодаря которому у нас в розетках переменное напряжение.

Трансформатор Тесла требует хорошего заземления. Батарея не самое лучшее решение для этих дел, но за неимением ничего более подходящего и это сойдет. Контакт должен быть надежным, три метра провода должно хватить, чтобы дотянутся куда угодно в пределах одной комнаты.

В новых домах такой фокус может не пройти из-за металлопластиковых труб в системе отопления. Потому проверяем наличие напряжения между фазой и землей, должно быть 220 вольт. Некоторые пускают заземление через зануление, тоже годный вариант. Между нулем и землей существует потенциал в 3.7 вольта, Креосан недавно рассказывал как можно воровать электричество подобным способом, заряжать телефон и зажигать лампочки, вот только забыл упомянуть тот факт, что современные цифровые счетчики считают потребление энергии как по фазе, так и по нулю. Максимум что вы выиграете, так это визит инспектора к себе в гости.

Итак, включаем питание накальной цепи. Лампа выходит на режим достаточно быстро, секунд 5 хватает для этого дела. Второй рубильник подает питание на мот. Ни в коем случае нельзя подавать высокое напряжение на анод лампы, без включенного накала. Входное напряжения на моте, регулируется с помощью ЛАТР-а, он дает напряжение от нуля до 220 вольт. Незаменимая вещь в работе с подобными схемами. Повышаем напряжение и видим, что генератор заработал. С появлением высокочастотного электрического поля светодиодный светильник закрепленный под полкой начинает немного светится и мигать.

На кончике отвертки, что служит терминалом для выхода молний появился небольшой стример. По мере повышения напряжения размер его растет, но разряды какие-то тонкие и не внушительные. Изменим положение обмотки связи, сместим её чуть вниз. Смотрим что поменялось в работе. Постепенно повышаем напряжение… видим что разряды стали более уверенными, толще, длинней и ярче. Звук довольно внушительный, похож на глухой рёв спортивного автомобиля.

Поиск резонанса осуществлялся либо отматыванием витков, либо подбором резонансного конденсатора. Начал отматывать витки. Увеличение мощности разрядов говорит от том, что мы на правильном пути. Разряды мощней, толще, длинней, самое интересное произошло тогда, когда начал увеличивать емкость резонансного конденсатора. Разряд увеличился, и на глазах начал уменьшатся. Запахло горелой бумагой.

При детальном осмотре выявилось, что картон начал прогорать. А если появился маленький прогар, то он постепенно превращается в большой, так как углерод получившийся в результате сгорания чего-либо становится отличным проводником. В общем это гангрена, которую необходимо немедленно ампутировать. Избавляемся от проблемного участка с помощью ножовки по металлу. Пару минут, проблема решена, а рука подкачана.

Так как резонансный контур изменил свои характеристики путем уменьшения длины вторичной катушки, снова доматываем и отматываем витки первички. Мощность увеличивается. Настроение превосходное, пару секунд радости и конструкция начинает подводить. Вторичку пробивает на первичку. Слишком близко размещены обмотки друг к другу. Предположения были что такое может произойти, но не так быстро. Первый день настройки, и многочасовая работа отправляется на помойку. При желании, эту трубу можно разрезать надвое, и сделать к примеру качер Бровина на транзисторе.

Поначалу хотел изолировать вторичку с помощью пластиковой бутылки, но как показывает практика — этот колхоз ни к чему хорошему не приводит. Одеваем кроссовки и выдвигаемся в ближайший сантехнический магазин за сливной 10-сантиметровой трубой. Такой диаметр уменьшит коэффициент связи обмоток, что есть хорошо в данной конструкции. Диэлектрические способности у такого цилиндра куда лучше чем у обычного картона.

Поверх трубы намотаем слой бумаги, на нее укладываем витки индуктора и обмотки связи. Бумага позволяет спокойно передвигать обмотки по всей длине трубы. Устанавливать катушки удобно на заглушки, они родом из того же магазина сантехники и позволяют соблюдать центровку всего резонансного контура. Немного усилий и конструкция снова готова к работе. Повторяем процедуру включения. В начале подаем питание на накал, ждём пару секунд, а затем включаем анодное напряжение. Оно сейчас в нуле и регулируется лабораторным автотрансформатором. Включаем его и постепенно поднимаем напряжение.

Разряды с увеличением коэффициента связи стали больше и красивей. На этом моменте наверное стоило завершить пост, схема заработала, разряд мы увидели. Но по традициям на этом, всё только начинается.

Для окончательной и более правильной работы, автогенератор необходимо настроить на осциллографе. Настраивать систему будем по максимальной амплитуде сигнала. Щуп осциллографа подключать напрямую к схеме не будем, для настройки разместим его на уровне тора и будем смотреть эфирный сигнал. Вся наводка, форма, частота и амплитуда сигнала отобразится на экране осциллографа. В данной схеме, этой информации для настройки будет более чем достаточно. Включаем накал. Подаем анодное напряжение. Регулируем напряжение автотрансформатором… но почему-то ничего не происходит… разбираемся что не так!? Ага, забыли подключить заземление, бывает, прикручиваем его на свое место и повторяем процедуру включения. Крутим ручку и сигнал оживает. Это наш индикатор в мире настройки. Входное напряжение на моте всего 50 вольт, отлично, нам сейчас разряды в воздухе не нужны.

Альтернативой обнаружения высокочастотных полей может служить обыкновенная неоновая лампочка. Амплитуду сигнала ею определить не выйдет, но зато можно судить о работоспособности устройства в целом, правильной или нет — это уже другое дело.

Итак, в процессе настройки удалось выделить два интересных режима работы. Первый это плавно затухающий импульс с небольшой амплитудой в отличии от второго режима. Сейчас мы перекидываем провода на разные витки индуктора и наблюдаем как меняется сигнал. Внимание вопрос знатокам. Какой режим автогенератора дает наибольшие разряды: вариант «а»- с плавно затухающим сигналом, но малой амплитудой, или вариант «б»- с большой амплитудой, но коротким импульсом?

Настройка резонанса с помощью конденсаторов. У этих образцов разная емкость, как выбрать нужную? Всё просто, поочередно соединяем конденсаторы параллельно индуктору и смотрим на сигнал. Нужно быть при этом осторожным, тут развиваются большие токи, которые могут нанести фаталити вашей руке. Дохлые электронщики никому не нужны. Если емкость будет слишком большая, она попросту погасит всю амплитуду сигнала.

В начале выпуска я обещал рассказать зачем нужны такие массивные контакты на конденсаторах. Во время работы, особенно на резонансе, в индукторе развиваются огромные токи, порядка нескольких сотен ампер, если такой ток пойдет через тонкие ножки обычного конденсатора, они попросту перегорят как перемычка в предохранителе. В данной схеме хорошо прижился конденсатор КВИ3 на 1500 пФ 10 кВ. Год выпуска 1978, раритет в своем роде, старше меня лет на 10.

Схема автогенератора работает в принудительном режиме прерывания с частотой сети 50 Гц, если растянуть во времени затухающие колебания, можно высчитать частоту работы автогенератора. Синхронизируем эту старую рухлядь и приступаем к расчетам.

Сейчас, переключатель времени деления на осциллографе стоит в положении 0.5 мкс. Это означает, что одна клетка на шкале экрана равна 0.5 мкс. Один период синусоиды занимает 5 клеток, следовательно 5 умножаем на 0.5 равно 2.5 мкс. Частота находится по формуле: 1 деленная на период. Считаем. 1/2.5 мкс равняется 0.4 мГц, что равняется 400 кГц. Отсюда вывод, резонансная частота настроенной катушки Тесла, ровняется 400 кГц.

Расчеты могли быть более точными при наличии современного оборудования, но для данной схемы оно попросту не нужно. После настройки регулируем положения индуктора и обмотки связи так, чтобы амплитуда сигнала на осциллографе была максимальной. На этом этапе настройку ламповой катушки тесла, можно считай исчерпывающей. Потребление силовой части схемы без цепи накала, составляет 720 Вт.

В работе ламп есть что- то удивительное, когда берешь их в руки, возвращаешься в те далекие теплые времена. Транзисторы и прочая современная электроника со временем приедается, становится скучной. На лампу можно смотреть вечно, ну или 1000 часов пока не пропадет электронная эмиссия и катод не обеднеет. Теперь время посмотреть как это всё работает.

В процессе работы схемы, лампа не перегревается и может работать продолжительное время, скажем 10 минут без перерыва. Но находятся умельцы, которые ставят на выходе мота много-количественные сборки из микроволновочных конденсаторов, мощь схемы увеличивается, лампа начинает работать на пределе своих возможностей. Естественно графитовый анод лампы нагревается до красна, катод расходует свой ресурс. Такой режим работать будет, но не долго.

Для увеличения срока службы лампы на больших мощностях используют прерыватели. Это грубо говоря переключатель, который на короткое время запускает генератор на Тесле. Секунда работы, секунда отдыха, как-то так. Режимы естественно можно менять.

Свечение различных лампочек в высокочастотных электрических полях это вообще отдельная тема, некоторые образцы настолько красивы, что претендуют на отдельный пост.

Слыхали про то, что различными солями можно подкрашивать цвет огня, сейчас проверим это на практике. Для этого берем обыкновенную поваренную соль и разбавляем ее небольшим количеством воды. Получившуюся кашу наносим на электрод. Ионы натрия должны подкрасить молнию в оранжевый цвет, это сейчас и посмотрим.

Данная конструкция проста в повторении, и элементарна в настройке. В ней нет дорогих деталей, хотя цена — дело относительное, стоимость всех элементов составляет примерно 65 баксов не включая ЛАТР для регулировки входного напряжения в анодной цепи.

В одном из следующих постов мы рассмотрим полупроводниковую систему, там узнаем как рассчитывается резонанс, как управлять железом и прочую малоизвестную нормальному человеку ерунду.

Для справки. Съемка сегодняшнего выпуска вместе с пост обработкой, написанием текста и прочими процессами заняла 2 месяца. Это можно назвать быстрым выпуском. В комментариях вы часто пишете чтобы мы снимали материал в сфере физики и электроники, сейчас так и происходит, но тут есть обратная сторона медали, время. Теперь выпуски будут выходить реже чем обычно, надеюсь вы всё понимаете.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *