Почему иногда при отключении электромагнита мелкие детали
Перейти к содержимому

Почему иногда при отключении электромагнита мелкие детали

  • автор:

Почему иногда при отключении электромагнита мелкие детали

Тормозные электромагниты и электрогидравлические толкатели электрических кранов

Для управления механическим тормозом служит электромагнит, разжимающий колодки и освобождающий тормозной шкив при прохождении тока через обмотку магнита. При отключении электромагнита от сети отпадает его якорь и происходит затормаживание под действием груза или пружины. При любом отключении электродвигателя, как аварийного, так и преднамеренного, колодки или лента тормоза автоматически приходят в действие. Тормоз также приходит в действие и в случае срабатывания конечных выключателей при переходе крайних положений.

В зависимости от рода тока тормозные электромагниты изготовляются следующих типов:
1) переменного трехфазного тока — тип КМТ ;
2) переменного однофазного тока — тип МО;
3) постоянного тока — тип КМП , ВМ, МП и А.

Тормозные электромагниты изготовляются короткоходовыми и длинноходовыми.

Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
  • Пожарная безопасность при эксплуатации мостового крана
  • Электробезопасность при эксплуатации мостового крана
  • Правила безопасности при подъеме и перевозке грузов на мостовом кране
  • Ремонт кранового оборудования и неисправности мостового крана
  • Работа на мостовом кране и остановка крана
  • Осмотр мостового крана перед началом работы
  • Подготовка и допуск крановщиков к обслуживанию мостовых кранов
  • Условные обозначения, принятые в электрических схемах мостовых кранов
  • Прочее электрооборудование, применяемое на мостовых кранах

Ходом электромагнита называется расстояние, на которое перемещается подвижная часть электромагнита при включении и отключении тока. Величина хода у разных электромагнитов колеблется в пределах от 10 до 150 мм.

При установке электромагнитов стремятся использовать неполный ход магнита, чтобы оставался запас не менее 10% в нижнем положении якоря для возможности его опускания по мере срабатывания колодок.

Тормозные электромагниты постоянного тока изготовляются для параллельного или последовательного соединения с электродвигателем. Электромагнит постоянного тока типа КМП (рис. 1) представляет собою стальной или чугунный цилиндр, внутри которого помещена катушка и подвижный якорь из мягкой стали. На нижней части корпуса имеются лапы для крепления к механической части тормоза. Для того чтобы сила тяги в начале и в конце движения якоря была равномерной, сердечник магнита и противолежащий ему упор на крышке делают конической формы.

Рис. 1. Тормозной электромагнит постоянного тока типа КМП : 1 — корпус; 2 — катушка; 3 —направляющая немагнитная втулка; 4 — подвижной якорь; 5 — винт успокоителя (буфера)

Сердечник свободно скользит в направляющей втулке из немагнитного металла. Для смягчения ударов служит воздушный буфер. Ток подводится к клеммной коробке в нижней части корпуса.

Катушки электромагнитов параллельного включения делаются из тонкой изолированной проволоки с большим числом витков и обладают большой индуктивностью. Поэтому к зажимам такого электромагнита подключается гасящее или разрядное сопротивление, предназначенное для ( снижения величины перенапряжений, возникающих при его отключении.

Электромагниты последовательного включения не требуют разрядного сопротивления, они имеют катушку из толстой проволоки с малым числом витков. По конструкции они не отличаются от электромагнитов параллельного включения. Эти электромагниты имеют один существенный недостаток, ограничивающий их применение: изменение тока двигателя при подъеме различных грузов влечет за собой изменение и втягивающего усилия.

В связи с этим, они регулируются на срабатывание при самом малом токе двигателя. Номинальное тяговое усилие магнитов параллельного включения гарантируется при падении напряжения до 10%.

Тормозные электромагниты переменного тока типа КМТ являются длинноходовыми и применяются для грузовых тормозов.

Магнитопровод трехфазного магнита похож на сердечник трехфазного трансформатора. Он набирается из листов трансформаторного железа для уменьшения потерь от вихревых токов. Верхняя часть магнитопровода неподвижна, укреплена на корпусе, а нижняя может двигаться и во включенном состоянии плотно прижимается к верхней (рис. 2). Чугунный корпус состоит из двух частей, соединенных между собой болтами. На верхней части сердечника укреплены три катушки. Выводы катушек подводятся к клеммному щитку, установленном на боковой стенке корпуса. Сердечник может свободно перемещаться в вертикальном направлении; при своем движении он давит на шток находящегося внутри цилиндра плотно пригнанного к нему поршня. В свою очередь, поршень при своем движении сжимает воздух в цилиндре, что смягчает удары при включении и отключении магнита.

Рис. 2. Тормозной электромагнит трехфазного тока типа КМТ : 1 — регулировочный винт буфера; 2 — подвижная часть; 3 — клеммная коробка; 4 — катушки; 5 — цилиндр воздушного буфера; 6 — поршень буфера

Регулировка работы воздушного буфера производится винтом изменяющим при завинчивании сечение воздушного канала, соединяющего полости над поршнем и под. поршнем. Для сцеплений штока магнита с механическими деталями тормоза в нем сделано два отверстия,, расположенных под углом 90° относительно друг друга.

При втягивании подвижной части сердечника в ее крайнем положении зазор между подвижной и неподвижной частями должен отсутствовать. Попадание грязи и пыли на торцовые части сердечника ведет к образованию зазора, сердечник плотно не смыкается, вследствие чего ток резко возрастает и катушки будут перегреваться, что может привести к их перегоранию.

Тормозные электромагниты однофазного переменного тока типа МО имеют одну катушку, насаженную на неподвижную часть магнитопро-вода (рис. 3). Подвижная часть отжимается от неподвижной специальной пружиной. При включении катушки возбуждается магнитный поток, подвижная часть притягивается к неподвижной, преодолевая силу пружины, и нажимает на шток тормоза.

При отключении тока подвижная часть отходит от неподвижной под действием пружины, тормоз закрывается и механизм затормаживается.

Для устранения вибрации в магнитах типа МО применяют успокоитель в виде короткозамкнутого витка или кольца из толстой медной проволоки, вставленного в пазы подвижной части магнитопровода. Под действием переменного магнитного потока в этом витке индуктируется своя Электродвижущая сила и возникает довольно значительный ток, протекающий по короткозамкну тому витку. Благодаря его наличию электромагнит работает спокойно, без шума. При разрыве короткозамкнутого витка тормозной магнит будет сильно гудеть. Иногда неопытные крановщики или монтеры при ремонте снимают короткозамкнутый виток, как «лишнюю» деталь, что совершенно недопустимо.

Рис. 3. Тормозной электромагнит однофазного тока

(Пунктиром показано положение электромагнита в отключенном состоянии).

При тяжелом и весьма тяжелом режимах работы применение электромагнитов типа МО нежелательно ввиду их быстрого износа. В этих случаях устанавливают магниты постоянного тока типа МП и А, питаемые от выпрямителя.

У всех электромагнитов постоянного и переменного тока имеется существенный недостаток: в начале движения якоря, когда требуется наибольшее усилие, магниты дают наименьшее усилие, а в конце хода, когда требуется уменьшение усилия для ослабления удара, магнит развивает наибольшую силу.

У тормозных электромагнитов переменного тока могут сгореть катушки, если магнит включен, а сердечник не замкнулся по какой-либо причине (например, вследствие перекоса или заклинивания, а также при попадании грязи на поверхности ярма и сердечника). Ток при незамкнутом сердечнике будет в несколько раз больше, чем при замкнутом.

В настоящее время все большее распространение на кранах с тяжелым и весьма тяжелым режимом работы получают распространение электрогидравлические толкатели, обладающие большей надежностью, чем электромагниты.

Кроме плавного торможения они позволяют регулировать скорость крановых механизмов. Для этого двигатели толкателей подключают к ротору приводного двигателя, который питает толкатель током пониженной частоты, и поэтому толкатель развивает неполное число оборотов, вследствие чего тормоз открывается неполностью, механизм лишь притормаживается.

На рис. 4 приведен разрез электрогидравлического толкателя. Электрогидравлический толкатель состоит из двигателя и гидравлического насоса, расположенного в корпусе, в нижней части которого имеется поддон. Внутри корпуса насоса помещается золотник, крыльчатка насоса и поршень, с которым скреплен шток, выходящий наружу из корпуса через специальные сальники.

Рис. 4. Гидравлический толкатель

При подаче напряжения на двигатель вращается вал. Крыльчатка насоса, вращаясь, создает избыточное давление в золотниковой коробке, вследствие чего золотник поднимается и открывает доступ рабочей жидкости.

Рабочая жидкость перекачивается из пространства над поршнем под него и поднимает поршень вверх.

При отключении двигателя насос останавливается, поршень под действием внешней нагрузки и собственного веса опускается вниз и жидкость вытекает в верхнюю часть цилиндра.

Когда поршень придет в крайнее нижнее положение, возвратная пружина опустит золотник вниз и закроет золотниковое отверстие.

Ход поршня вверх, а следовательно, и время работы электро-гидротолкателя при подъеме тормозных колодок регулируется шпилькой, которая ограничивает ход крестовины вверх. Золотники вследствие этого неполностью открывают отверстия, и движение штоков замедляется.

Ход поршня вниз регулируется шпилькой с удерживающим кольцевым выступом, также замедляющим движение штока.

Электрогидравлические толкатели допускают до 720 включений в час, время их срабатывания составляет от 0,6 до 1,5 сек, но может быть доведено до 12 сек.

Электрогидравлические толкатели соединяются с тормозной системой так же, как и тормозные электромагниты.

Варочная панель отключается при нагревании

Если варочная панель отключается при нагревании прямо во время приготовления еды, это становится большой проблемой для пользователя. В некоторых случаях такая неприятность нормальна и объясняется конструктивными особенностями и принципом работы бытовой техники. В других ситуациях дело в нарушении пользователем правил управления либо условий эксплуатации прибора или его отдельных конфорок. Но иногда возникают требующие обязательного ремонта поломки.

В этой статье расскажем, почему отключается варочная панель во время работы, каковы причины этой проблемы, а также как устранять неисправности. Рассмотрим все возможные случаи, ответим на частые вопросы.

5a7c0fd6686cd.jpg

Особенности неисправностей

В отличие от привычной плиты, варочная панель имеет более сложную конструкцию с многочисленными элементами, которые должны обеспечивать бесперебойную работу и автоматизировать некоторые процессы. И такое непростое устройство, с одной стороны, упрощает жизнь. Но с другой, могут возникать проблемы, требующие решения, в том числе с ремонтом.

К самым распространённым неисправностям современных варочных панелей относят:

  • устройство включается и выключается сразу после активации конфорки нажатием на нужную кнопку панели управления;
  • на дисплее появляются числовые и буквенные символы ошибок с определёнными кодами;
  • прибор совсем не включается (при этом может гореть индикатор остаточного тепла);
  • не работает только одна конфорка или несколько;
  • не активна функция автоматического нагревания;
  • обычная электрическая или индукционная плита включается и какое-то время работает, но потом самопроизвольно прекращает нагрев.

Все эти проблемы актуальны и для обычных электрических панелей, и для индукционных. Газовые плиты и поверхности обычно функционируют без сбоев, но и они могут демонстрировать неисправности, в том числе отключения при нагреве или при зажигании пламени. Виды техники имеют существенные отличия в конструкции, поэтому для них возможные причины поломок стоит рассмотреть отдельно.

varochnye-paneli-franke-1.jpg

Электрические панели

Варочные электрические стандартные панели оснащены классическими нагревательными элементами, которые нагреваются под действием тока и передают тепло рабочей поверхности. От последней тепловая энергия поступает на посуду и её содержимое.

Почему варочная панель отключается сама по себе? Для электрической техники причины могут быть следующими:

  • Нарушения, локализующиеся в контактной группе. Ремонт обязателен.
  • Размыкания цепи. Участки подключения со временем расшатываются либо окисляются, что провоцирует отсутствие непрерывного прохождения электричества.
  • Неисправность переключателя, отвечающего за изменения уровня мощности по мере нагрева. По этой причине варочная панель включается и сначала работает, но потом почти сразу отключается. Нужен ремонт.
  • Включение защиты от перегрева и последующего перегорания главных узлов. Такой механизм может срабатывать при очень высокой температуре раскалённого нагревательного элемента или при недостаточном отведении тепла из корпуса. Последняя причина – проблема, связанная с поломкой вентиляторов системы охлаждения либо с неправильной установкой, при которой под варочной панелью нет свободного пространства для циркуляции воздуха (например, снизу рядом поставлена посудомоечная машина или независимый духовой шкаф, который должен монтироваться отдельно).
  • Работа устройства защитного отключения (УЗО) либо предохранителя. Такие приспособления при возникающих неисправностях сети, например, утечках тока или коротких замыканиях прерывают подачу электроэнергии. А так как варочная панель должна работать от отдельной линии электропитания, то остальная техника при этом может продолжать функционировать.
  • Некорректная работа температурного датчика, термореле. По этой причине нормальная температура может восприниматься как очень высокая, вследствие чего варочная панель выключается из-за распознанного перегрева.
  • Требующая ремонта поломка термостата, терморегулятора. При такой неисправности не будет поддерживаться выбранное пользователем температурное значение. И если показатель превысит допустимую величину, включится защита от перегрева.
  • Повреждения нагревательных элементов-блинов. Если в них есть трещины, то через такие зазоры внутрь может попадать вода из-за конденсата или выкипания содержимого посуды. Это провоцирует короткие замыкания, вызывающие последующие отключения.
  • Неисправность платы управления либо реле. При таких проблемах часто случаются разные сбои.
  • Наличие на плате электроники высохшей жидкости или конденсата.
  • Блок управления, который работает некорректно. Именно он запускает нагрев при нажатиях на кнопки панели.
  • Попадание воды в блок питания. Оно происходит при активном кипении. Обычно поверхность из стеклокерамики или стекла надёжно защищает все важные элементы, но при её трещинах влага всё же может проникать внутрь.
  • Слабая, старая проводка. Вероятно, сеть просто не выдерживает нагрузку, возникающую при работе техники. При этом панель включается, даже некоторое время работает, но спустя 20-30 секунд или больше по мере нагрева до заданной температуры вдруг отключается. При превышении предельного значения потребляемой мощности автомат прекращает подачу электроэнергии.
  • Некачественная пайка реле при сборке. Из-за неё происходит сильный нагрев контактов, что провоцирует сгорание коммутационного аппарата.
  • Автомат, установленный на электрощитке, не рассчитан на создаваемую варочной панелью нагрузку. Когда значение увеличивается по мере нагрева, устройство в автоматическом режиме обесточивает проводку в квартире или доме.
  • Случайные нажатия на кнопки выключения. Сенсорные элементы управления очень чувствительны, поэтому даже при незаметных прикосновениях к ним кухонным полотенцем или фартуком может происходить отключение. А иногда оно обусловлено попаданием на сенсоры пищи.
  • Случайная блокировка панели управления. Она тоже происходит при случайных нажатиях на несколько кнопок одновременно.

the-hob-in-the-kitchen-photo-01.jpg

Индукционные модели

Принцип работы такой техники заключается в процессе индукции – создания электромагнитного поля, прохождения вихревых токов через дно посуды и передачи тепловой энергии содержимому сковороды или кастрюли.

Почему индукционная плита отключается во время функционирования? Причины могут быть теми же, что и для электрических моделей. Но есть и специфические, обусловленные принципом работы индукции.

Если плита нормально включается, некоторое время работает, а потом вдруг выключается, это может быть обычным явлением при выборе малой мощности. Дело в том, что нагрев в индукционных плитах не постоянный, а прерывистый, импульсный. И чем меньше мощность, тем чаще катушка выключается. Это может быть заметно по кипящей жидкости: она сначала активно бурлит, а потом процесс становится менее интенсивным или совсем прерывается. Если с вашей плитой происходит то же самое, попробуйте просто выбрать более высокую мощность. Тогда нагрев станет непрерывным.

5u3a9VB8w.jpg

Если варочная поверхность включается, далее некоторое время работает без нареканий, а потом вдруг выключается даже на средней или большой мощности, причины могут быть такими:

  • Использование посуды с тонкими стенками и дном. Даже если она совместима с варочной индукционной панелью, при сильном нагреве предмет может деформироваться. В итоге дно будет изгибаться, становиться неровным. Вихревые токи не смогут проходить через него, и конфорка просто выключится, «подумав», что на поверхности ничего нет. Для индукции лучше применять толстодонные сковороды и кастрюли.
  • Случайное сдвигание посуды с конфорки. Зона нагрева должна быть занята дном сковородки или кастрюли минимум на 75%. При смещении же происходит автоматическое отключение, так как панель воспринимает это, как полное отсутствие предмета на конфорке, которая работает.
  • Потеря сигнала, поступающего с блока управления. Катушка просто отключается, нагрев прекращается.
  • Вы включили плиту, но на протяжении 10 секунд не успели ничего сделать (поставить посуду). Если конфоркой не пользоваться, она отключается.
  • Установка таймера на короткое время. Возможно, вы выбрали его неверно, к примеру, перепутав часы с минутами.
  • Работа непрерывно в течение двух часов. В таком случае активируется защитное отключение. Повторное включение будет возможным лишь после полного остывания варочной панели.

nt_switch_rev_01_ok.jpg

Газовые панели

В газовых плитах и панелях такого обилия электроники, как в электрической и индукционной технике, нет, и система управления гораздо проще, поэтому риски поломок с отключениями гораздо меньше. И всё же сбои в работе тоже возможны. Если панель или плита выключается спустя несколько секунд после зажигания огня конфорки, это может быть обусловлено следующими неисправностями или иными причинами:

  • Засорение, сильное загрязнение горелок. Они могут забиваться капающим из посуды жиром, частицами пищи, продуктами горения газа, копотью. В таком случае жар недостаточный либо неравномерный из-за сужения просветов отверстий. Система газ-контроля считает, что пламя отсутствует, поэтому срабатывает защитный механизм, который перекрывает подачу топлива. Газ перестаёт идти через форсунку. Этот сбой в работе легко устраняется. Просто снимите горелку, тщательно её очистите и установите на прежнее место, проконтролировав правильность положения.
  • Перекос, неправильное расположение конфорки. Возможно, она случайно сдвинулась и стоит так, что газ не может выходить корректно, пламя становится неравномерным либо слишком слабым. В этой ситуации снова активируется система газ-контроля. Следует проверить корректность установки детали и разместить её правильно, ровно.
  • Снижение давления топлива, поступающего из центрального газопровода или баллона. Если при централизованной подаче параметры системы обычно стабильны и меняются только при серьёзных авариях, то при использовании для работы плиты или панели баллона контролировать количество остатка его содержимого сложно. Давление баллонного газа может снижаться из-за заканчивающегося газа, частично перекрытого, повреждённого или засорённого вентиля, повреждений самой ёмкости и утечек, замерзании резервуара (если он находится на открытом пространстве на морозе), а также сломанного редуктора. В таких случаях газ поступает в малых количествах, которых недостаточно для поддержания горения огня. Происходит срабатывание газ-контроля.
  • Неисправность системы газ-контроля. Именно она ответственна за перекрывание газа. Если механизм работает неисправно, огонь может тухнуть прямо во время приготовления еды на плите или газовой панели.

nikolatesla_unplugged_black_inox_gallery_0.jpg

Как выявить неисправность?

Если выключается варочная панель во время работы, то что делать в этом случае? Самый лучший вариант – обратиться к специалисту. Если техника находится на гарантии, и её срок её не кончился (обычно он длится 1-2 года), то в сервисном центре выполнят полную диагностику и проведут ремонт бесплатно. В ином случае можно вызвать опытного частного мастера.

А возможно ли определить причины неисправности самостоятельно, без помощи профессионалов? Оценить корректность работы панели реально, но только если вы владеете соответствующими навыками разборки техники и знаниями в сфере электроники. Причём схему устройства нельзя найти в обычной прилагаемой производителем инструкции. Поиск такой информации в интернете тоже может не привести к ожидаемым результатам.

3310_04.jpg

Если вы готовы рискнуть и выявить причины неисправности своими силами, то действуйте по такому алгоритму:

  1. Начать следует со снятия верхнего рабочего стеклокерамического или стеклянного покрытия варочной поверхности. Под ним находятся нагревательные элементы либо индукционные катушки. Тут же расположена система охлаждения с вентиляторами.
  2. Осмотрите тщательно все детали, открывшиеся после демонтажа верхней панели, на предмет оплавления, копоти, наличия влаги, изменения цветов элементов электросхемаы или обмотки, разрывов контактов.
  3. Если визуальное изучение не помогло, придётся диагностировать варочную панель полностью. Если удастся, найдите принципиальную схему техники. Она может иметься на официальном сайте компании-изготовителя или на одном из тематических форумов.
  4. Сначала нужно проанализировать всю группу питания, в которую входят блок предохранителей, контакты, а также кабели. Всё это рекомендуется прозвонить специальным прибором – мультиметром. Если есть пробитые участки, требуется их замена (как правило, ремонт невозможен).
  5. Если отключается индукционная панель, то нужно выполнить тщательный осмотр её катушек. Намотка должна быть ровной и равномерной, без касаний либо сильных зазоров между витками, без нагара, без наличия посторонних предметов, которые проводят ток.
  6. Далее анализируется работа температурных датчиков. Нужно выяснить их проводимость, которая изменяется при нагреве. Для этого потребуется мультиметр, а источником локальной тепловой энергии может быть, например, фен или паяльник.
  7. Нужно проверить контакты в участках соединений проводов с высокочастотным генератором и индукционной катушкой. Цепи необходимо прозвонить, используя мультиметр.
  8. Далее осматривается внимательно плата управления, которая в условиях частых термических воздействий в ограниченном пространстве может покрываться трещинами. Нужно изучить токопроводящие дорожки. Чтобы заметить их дефекты, можно использовать увеличительное стекло, а также мощный фонарь.
  9. Зону нагрева, вызывающую сомнения, нужно снять. Вместе с нею демонтируется и модуль генератора. Проверяется плата. При выходе из строя отдельных компонентов обычно меняется оттенок контактных групп либо корпуса, так что проблемы видны сразу. Идентифицировать неисправный электронный элемент варочной поверхности можно по его маркировке. Если таковой нет, или символов не видно, загляните в принципиальную схему. Вышедшую из строя часть нужно заменить.
  10. Если конфорки варочной поверхности одинаковые, целесообразно поменять плату генератора. Так вы сможете найти не функционирующий элемент путём исключения и будете знать точно, что не работает: непосредственно катушка или же управление.

Совет! Каждый этап разборки желательно фиксировать на фото, чтобы после проведённой диагностики иметь возможность правильно собрать варочную панель, не нарушив последовательность установки деталей и их подключения.

fit_930_519_false_crop_1200_900_0_0_q90_16842_3bfce5505d.jpeg

Возможные коды ошибок

Запустив в варочной электрической либо индукционной панели программу самодиагностики, можно причину отключений при работе определить по коду. Рассмотрим основные часто встречающиеся комбинации, а также расскажем, что они значат:

  • E0, E3, EA, E10, F15, E, E22, E4. Катушка перегрелась. В таких ситуациях нагрев варочной поверхности отключается.
  • E1, F85, E25, E3, E6, EF35. Перегрелись внутренние элементы техники, и тоже сработало защитное отключение.
  • ER, F16, E5, ER26, E8, E7. Напряжение питания является неверным.

Важно! Коды зависят от конкретных производителей и моделей варочных панелей. Иногда индикация на дисплее сопровождается характерными звуками – акустическими сигналами.

5a7c1241cc506.jpg

Подведём итоги

Любая варочная панель, как индукционная, так и электрическая, может работать со сбоями. Если она начинает отключаться спустя некоторое время после включения, то причины могут крыться как в неисправностях, так и в нарушениях владельцем правил эксплуатации техники.

Некоторые проблемы можно решить самостоятельно, достаточно лишь изучить прилагающуюся инструкцию. Но не всегда целесообразно и возможно пытаться чинить панель своими руками. Во-первых, можно просто не найти поломку и даже усугубить ситуацию. Во-вторых, некоторые детали сложно найти в открытом доступе.

Сложные неисправности приводят к неизбежному ремонту. Но иногда он требует настолько больших затрат, что рациональнее приобрести новую варочную панель вместо старой плиты. Выбрать её вы сможете в нашем интернет-магазине.

3.2.6. Электромагнитные дефекты

Анализируя сигналы с датчиков вибрации, установленных на опорных подшипниках электрических машин, можно выявить достаточно много специфических дефектов состояния, возникающих только в электродвигателях и генераторах различного типа. Причиной повышенной вибрации электрических машин могут являться как различные внутренние электромагнитные дефекты электрических машин, так некоторые специфические особенности проявления электромагнитных процессов в обмотках и сердечниках, т. е. это просто может отражать особенности нормальной работы электродвигателей и генераторов во вращающихся агрегатах.

Применение вибрационных методов диагностики дефектов состояния электродвигателей и генераторов обычно является первым этапом в оценке их состояния. Так происходит потому, что они позволяют оперативно анализировать состояние оборудования непосредственно во время его работы, или как это принято называть в литературе, реализуют диагностику и мониторинг технического состояния в режиме «on-line».

После применения вибрационного анализа для диагностики дефектов в электрических машинах, и выявления основных характерных признаков существования того или иного дефекта, можно, а иногда даже необходимо, применять другие, специализированные и, естественно, более точные методы диагностики состояния электрических машин.

Очевидно, что описание этих методов выходит за рамки данной работы, и ознакомиться с ними можно, если обратиться к другой, более специализированной литературе. Частично, но все равно более широко, чем это обычно делается в «обычной» литературе по вибрационной диагностике, эти методы рассмотрены в данном разделе. Некоторые аспекты диагностики электротехнического оборудования приведены ниже, в соответствующем разделе.

При выборе дефектов, которые мы описываем в данном разделе, мы исходили из простого определения. Если дефект можно диагностировать при помощи установки датчиков вибрации на опорных подшипниках, то его описание включено в данный раздел. Если же для диагностики необходимо устанавливать датчики вибрации в других точках контролируемой электрической машины, то описание диагностики таких дефектов вынесено в особый раздел данного методического руководства.

Обычные, достаточно широко распространенные причины повышенной вибрации электрических машин «не электромагнитного характера», такие как небаланс, проблемы подшипников, наличие изогнутого вала, и т. д. в данном разделе методического руководства никак не рассматриваются. По вопросам диагностики этих дефектов в двигателях и генераторах вибрационными методами следует обращаться к соответствующим разделам данного руководства.

Для проведения диагностики различных электромагнитных дефектов в электрических машинах необходимо использовать измерительное оборудование, имеющее достаточно высокие эксплуатационные параметры. Не все приборы, хорошо подходящие для диагностики дефектов механической природы возникновения, такие как небаланс, расцентровка, и т. д., могут быть использованы для анализа технического состояния электрических машин переменного тока.

Для успешной диагностики различных электромагнитных проблем в электрических двигателях и генераторах необходим анализатор спектров вибросигналов с очень высокой разрешающей способностью, с числом спектральных линий, не меньшем, чем 3200, а желательно и лучше. Кроме того, такой прибор должен иметь возможность проводить регистрацию вибрационных сигналов в течение достаточно длительного интервала времени, не менее 10 — 20 секунд. Это необходимо делать для эффективного разделения проблем механической и электромагнитной природы возникновения, что возможно сделать только в момент отключения контролируемого агрегата от питающей сети.

Измерение вибрации на подшипниках электродвигателей и генераторов нужно всегда проводить в трех направлениях — вертикальном, поперечном и осевом, иначе потом будет невозможно провести полную диагностику состояния. Идеальным является синхронная регистрация (не путать с синхронизированной регистрацией, которая гораздо менее эффективна) сразу шести вибросигналов с двух подшипников электрической машины. Обычно это повышает достоверность диагнозов дополнительно не менее чем на 10 %.

3.2.6.1. Описание физических процессов в электрических машинах

Вопросами диагностики текущего технического состояния и поиска дефектов в электрических машинах обычно занимаются специальные электротехнические службы, знакомые с особенностями физических процессов в двигателях и генераторах. Для тех, кто раньше не был практически связан с процедурой оценки состояния электротехнического оборудования, необходимо обязательно ознакомиться со специальной литературой, описывающей основные особенности его работы.

Дело в том, что существует несколько типов электрических машин, процессы в которых значительно отличаются друг от друга. Кроме того, в каждом типе электрических машин существует несколько специфических особенностей, не зная которые очень сложно проводить корректную оценку их технического состояния.

В самом начале данного раздела, на первом этапе описаний, кратко вспомним некоторые основные определения и понятия из минимального, по объему, курса электрических машин. Сделаем это для простоты объяснения причин возникновения вибрации в электрических машинах, а так же для того, чтобы не загромождать эти объяснения в дальнейшем, Знание этих основополагающих понятий совершенно необходимо для проведения корректного диагностирования дефектов электрических машин, для правильного толкования спектрального состава регистрируемых вибрационных сигналов.

По принципу действия различают три основных типа широко применяемых электрических машин:

  • Синхронные машины переменного тока, в которых частота вращения ротора совпадает с частотой вращения электромагнитного поля в зазоре. Эти машины могут работать в режимах двигателя и генератора, в практике встречаются и те, и другие.
  • Асинхронные машины переменного тока, в которых ротор вращается несколько медленнее. Величина отставания ротора от статора составляет несколько процентов, и характеризуется термином «скольжение». Теоретически также могут работать в режимах двигателя и генератора, но на практике встречаются практически одни двигатели.
  • Машины постоянного тока. Это также обратимые электрические машины, допускающие двигательный и генераторный режимы работы. На практике встречаются и те, и другие исполнения машин постоянного тока.

В данном разделе методического руководства будут рассмотрены основные способы диагностики состояния и поиска дефектов состояния электрических машин переменного тока, синхронных и асинхронных, как наиболее распространенных в промышленности и в быту. Электромагнитные проблемы машин постоянного тока очень сложно поддаются диагностике, в основе которой лежит анализ вибрационных сигналов с опорных подшипников, поэтому рассматриваться здесь не будут.

Синхронные и асинхронные машины являются по своему принципу действия обратимыми, т. е. могут работать в как режиме двигателя, так и в режиме генератора. В дальнейшем диагностика дефектов статоров синхронных и асинхронных машин, двигателей и генераторов, не будет подразделяться, т. к. они имеют одинаковые по конструкции статоры. Синхронные машины отличаются от асинхронных только конструкцией ротора, что найдет отражение в специальном подразделе, где будут описаны наиболее часто встречающиеся дефекты короткозамкнутых роторов.

Очень важно уже на самом первом этапе диагностики, заранее, определиться с диапазоном численных значений частоты вращения ротора и электромагнитного поля в зазоре. Для этого необходимо знать оборотную частоту вращения электромагнитного поля статора и оборотную частоту вращения ротора электрической машины переменного тока. Именно они определяют требования к приборам вибрационного контроля.

Максимальная частота вращения ротора электрической машины переменного тока определяется в размерности «обороты в минуту». В иностранной литературе широко используется термин RPM, что является сокращением стандартного параметра «Rotation Per Minute», т. е. те же «обороты в минуту». Эта максимальная частота вращения также является и номинальной, так как в нормальных условиях частота вращения машины переменного тока редко регулируется, а если и регулируется, то практически всегда с использованием преобразователей частоты.

Частота вращения ротора численно равна произведению частоты питающей сети, измеряемой в [Гц], умноженной на переводной коэффициент, равный 60 (количество секунд в одной минуте). В России принят стандарт частоты питающей сети в 50 Гц. Поэтому максимально возможная частота вращения роторов двигателей и генераторов переменного тока составляет 3000 об/мин. При частоте питающей сети в 60 Гц, что являющейся стандартной в Америке и в Японии, максимальная частота вращения ротора машины переменного тока составит 3600 об/мин.

В зависимости от особенностей конструкции статоров машин переменного тока частота вращения электромагнитного поля в зазоре может изменяться. Для определения этой частоты формула определения частоты вращения поля должна быть дополнена еще одним сомножителем «Р», находящимся в знаменателе:

Таким образом, частота вращения электромагнитного поля в зазоре электрической машины N0 равняется частному от деления максимальной частоты вращения электромагнитного поля в зазоре на число «пар полюсов статора – Р». Это конструктивный параметр обмотки статора, и он может принимать только целые значения, равные 1, 2, 3, 4, 5 и т. д. При этом частота вращения поля в зазоре электрической машины будет равна соответственно 3000 об/мин, 1500, 1000, 750, 600 и т. д.

При числе пар полюсов, отличном от единицы, частота вращения поля в зазоре электрической машины отлична от частоты питающей сети, причем в меньшую сторону от стандартных 3000 об/мин. Это очень важно учитывать при первой диагностике состояния «мало знакомых» электрических машин по спектрам вибросигналов.

В синхронных электрических машинах переменного тока частота вращения ротора всегда совпадает с частотой вращения электромагнитного поля в зазоре. Именно поэтому такие машины называются синхронными. Такие электрические машины имеют достаточно большую мощность, что связано с особенностями их конструкции. Можно смело утверждать, что «встретить» синхронную машину с мощностью менее 1000 кВт на практике очень сложно. Их мало, но они имеют большую единичную мощность, генераторы достигают мощностей до 800 МВт и более.

В асинхронных машинах переменного тока частота вращения ротора всегда меньше частоты вращения электромагнитного поля в зазоре на небольшую величину, ротор отстает от электромагнитного поля. Это отставание обычно называется скольжением «s» и измеряется в долях от единицы или в процентах. Имеющаяся небольшая разница в частотах вращения поля и ротора называется частотой скольжения ротора, которая измеряется в герцах или в процентах. В диагностике дефектов ротора асинхронного двигателя эта частота имеет большое значение.

Стандартный ряд рабочих частот вращения роторов асинхронных двигателей, в зависимости от числа пар полюсов обмотки статора, можно примерно представить в виде последовательности чисел — 2900 об/мин, 1450 об/мин, 970 об/мин.

Из этого ряда» хорошо видно, что частота вращения ротора асинхронной электрической машины всегда отстает от частоты вращения электромагнитного поля в зазоре электрической машины. Для сравнения напомним, что в синхронных машинах переменного тока, где частота вращения ротора совпадает с частотой вращения поля в зазоре, этот ряд рабочих частот вращения электрических машин составляет 3000, 1500, 1000 об/мин.

Отдельно необходимо остановиться на термине, который практические диагносты достаточно широко используют на практике, но, может быть, не совсем корректно понимают его смысл. В самом общем случае этот термин звучит примерно как «электромагнитные вибрации и электромагнитные гармоники в спектре вибрационного сигнала».

В электрических машинах переменного тока возможно возникновение специфических вибраций двух типов. Конечно, реальных причин повышения вибрации в электродвигателях и генераторах может быть гораздо больше, но при измерении вибрационных сигналов на опорных подшипниках реально зарегистрировать можно только «отклики» от этих двух причин. В другом разделе нашего руководства мы частично затронем некоторые другие аспекты вибрационной диагностики состояния электротехнической составляющей электрических машин, здесь же мы рассмотрим только способы диагностики возможных «механических дефектов» электрических машин.

Для начала дадим определение основным электромагнитным вибрациям, которые можно зарегистрировать на опорных подшипниках синхронных и асинхронных электрических машин. Как мы уже говорили, они могут возникать по нескольким причинам.

Во-первых, это электромагнитные вибрации ферромагнитных сердечников и стальных конструктивных элементов электротехнического оборудования, по которым во время работы оборудования протекает переменный магнитный поток.

Эти вибрации возникают за счет специфического процесса, который в литературе называется магнитострикцией. Этот эффект обусловлен тем, что при перемагничивании ферромагнитных материалов сердечника происходит изменение внутренней ориентации элементарных намагниченных частиц, доменов. При каждом перемагничивании сердечника происходит поворот доменов на 180 градусов, что в итоге и приводит к небольшому «линейному расширению» ферромагнитного материала. Чем больше величина магнитного потока в сердечнике, тем больше размеры элементарных доменов в ферромагнитном сердечнике, и тем больше будут вибрации сердечника электрической машины.

Поскольку перемагничивание сердечника магнитным потоком происходит дважды за один период питающей сети, то и частота вибрации, обусловленная эффектом магнитострикции, равняется удвоенной частоте питающей сети, т. е. она равняется 100 Гц. Мы обращаем дополнительное внимание читателя на то, что вне зависимости от оборотной частоты вращения ротора электрической машины, частота вибрации сердечника (пакета стали статора) всегда равняется 100 Гц.

Если оборотная частота ротора равняется 50 Гц, то гармоника электромагнитной вибрации располагается на спектре «в том месте», где может находиться вторая гармоника оборотной частоты. Если же оборотная частота ротора равняется, например, 25 Гц, то гармоника электромагнитной вибрации на спектре будет располагаться на месте четвертой гармоники оборотной частоты. Этими двумя простыми примерами мы еще раз подчеркнули, что электромагнитная гармоника не связана с частотой вращения ротора электрической машины, а зависит только от частоты питающей сети.

Во-вторых, вибрации в электрической машине вызываются специфическими электродинамическими силами, которые в литературе принято называть «амперовыми силами», т. к. их величина определяется по закону Ампера. Смысл закона Ампера звучит следующим образом – на два проводника с током действует сила взаимного притяжения, пропорциональная квадрату протекающего по проводникам тока, и обратно пропорциональная расстоянию между проводниками. Если направление тока в обоих проводниках одинаковое, то проводники притягиваются друг к другу. Если токи в параллельных проводниках текут в разные стороны, то проводники отталкиваются друг от друга.

Самое важное для нас в этом законе заключается в том, что в числителе стоит произведение токов в проводниках, т. е. квадрат тока промышленной частоты. Из тригонометрии следует известное соотношение, гласящее, что квадрат синусоидального сигнала есть другой гармонический сигнал, но имеющий удвоенную частоту. Таким образом, мы аналогично получаем, что сила электродинамического воздействия между двумя проводниками с синусоидальными токами промышленной частоты имеет удвоенную частоту, относительно частоты питающей сети.

Таким образом, мы определили, что вибрации электрической машины, не вызванные механическими проблемами, имеют удвоенную частоту относительно частоты питающей сети, т. е. равную 100 Гц. Это определение относится как к электромагнитным причинам повышенной вибрации, возникающим в сердечниках электрических машин силами магнитострикции, так и к электродинамическим силам взаимодействия проводников друг с другом, возникающим при протекании токов по обмоткам электрической машины.

Все это можно сказать несколько иначе. Основная, или, говоря терминами, принятыми в вибрационной диагностике, оборотная частота электромагнитных сил и вибраций в электрической машине равна удвоенной частоте питающей сети. Это совершенно отдельная сила, не связанная с частотой вращения ротора, что может быть легко выяснено при помощи средств кепстрального анализа. Она просто имеет частоту, равную удвоенной частоте питающей сети. Гармоники основной частоты этой силы имеют значения 200 Гц, 300, 400 и т. д. В чистом виде эта сила очень явно проявляется в статическом электрооборудовании. Примером этого является трансформатор, в котором гармоника вибрации с частотой питающей сети в 50 Гц практически отсутствует, а максимальное значение имеет гармоника вибрации с частотой 100 Гц.

Есть еще и третья (по порядку нашего повествования, а не по порядковому номеру в спектре) гармоника вибрации, имеющая электромагнитную природу возникновения. Она называется зубцово – пазовой гармоникой. Она не всегда столь значительна, как первые две, но сказать о ней все равно нужно.

Зубцово – пазовая гармоника вызывается особенностями конструктивного исполнения электрической машины переменного тока. У нее на статоре и на роторе обмотка всегда укладывается в пазах. При вращении ротора в зазоре статора возникает периодическое чередование ферромагнитных зубцов и пазов на статоре и роторе. Это приводит к модуляции магнитного потока в зазоре частотой, связанной с количеством пазов на роторе и статоре электрической машины.

При разработке электрических машин принимаются все меры, чтобы исключить влияние зубцово — пазовой структуры на работу машины. На статоре и роторе всегда различное число пазов, на роторе применяется «скос» пазов, когда ось паза идет не вдоль оси ротора, а как бы немного закручена вокруг оси и т. д. Тем не менее, существуют типы электрических машин, в которых «пазовая» гармоника оборотной частоты ротора является явно выраженной на спектре.

Необходимо хорошо понимать, что все эти три гармоники в спектре вибросигнала, имеющие электромагнитную природу возникновения, не всегда являются признаками наличия дефектов в контролируемой электрической машине, они практически всегда сопровождают ее работу. Признаком наличия дефекта обычно является увеличение амплитуд электромагнитных гармоник выше некоторого уровня, являющегося порогом нормального состояния оборудования.

Основной признак того, что анализируемая гармоника в спектре сигнала вибрации имеет электромагнитную причину возникновения — мгновенное исчезновение этой гармоники сразу после отключения электрической машины от сети.

Очень важным является то, что диагностика причин повышенной вибрации электрических машин должна проводиться при возможно большей нагрузке двигателя. Если исследования будут проводиться на холостом ходу, или же при небольшой нагрузке, то диагностика дефектов будет затруднена.

3.2.6.2. Сводка электромагнитных проблем ротора и статора

Приведем краткую сводку по электромагнитным проблемам электрических машин, которые можно эффективно диагностировать по спектрам вибросигналов. Здесь же приведем все характерные признаки каждого вида дефекта.

Для описания дефектов здесь и далее будем использовать термины:

F1 — частота питающей сети, в России равна 50 Гц.

FЭМ — частота электромагнитных сил в электрических машинах, равна удвоенной частоте сети, в России 100 Гц.

N0 — частота вращения поля в зазоре электрической машины, численно равна частному от деления 3000 на число пар полюсов Р, которое может принимать целые значения от единицы и более (об/мин).

F0 — частота электромагнитного поля в зазоре, Гц.

FP — собственная частота вращения ротора электрической машины. Для синхронных машин она равна частоте вращения поля. Для асинхронных машин она меньше на величину скольжения ротора.

s — скольжение ротора относительно электромагнитного поля в асинхронных машинах, безразмерная величина, численно равняется разнице между частотой вращения поля в зазоре и частотой вращения ротора, отнесенной к частоте вращения поля в зазоре

FП — зубцово — пазовая частота вибрации, численно равная произведению числа пазов (на роторе или статоре) на частоту электромагнитного поля в зазоре. Может быть повышенной относительно статора, относительно ротора, может быть разностная или суммарная частота биений пазовых частот ротора и статора.

Наиболее важные проблемы статора, которые можно диагностировать на основе анализа вибрационных сигналов:

  • Ослабление прессовки пакета стали, обрыв или замыкание стержней, витков, или даже секций в обмотке статора. Соответствующие вибрации проявляются на частоте действия электромагнитных сил FЭМ, равной удвоенной частоте питающей сети. Особое внимание при диагностике такого дефекта следует уделять наличию дробных гармоник электромагнитной частоты — 1/2, 3/2, 5/2 и т. д. от основной частоты. По значению частоты эти гармоники соответствуют основной и нечетным гармоникам питающей сети. Появление этих гармоник в спектре вибрационного сигнала говорит об опасной степени развития дефекта, о необходимости оперативного принятия соответствующих мер.
  • Эксцентриситет, эллипсность внутренней расточки статора относительно оси вращения ротора. Возникает обычно как дефект монтажа подшипниковых стоек, дефект состояния подшипниковых щитов или при общей деформации корпусных элементов самого статора. В вибрации проявляется на частоте вращения поля в зазоре, а также и на частоте действия электромагнитных сил в электрической машине, равной 100 Гц. Иногда сопровождается появлением боковых гармоник вблизи частоты 100 Гц. Дефект обычно сопровождается неравенством вертикальной и поперечной составляющих соответствующих гармоник. Пространственный максимум гармоник соответствует направлению эксцентриситета смещения оси статора. Наиболее просто направление смещения оси статора относительно оси ротора диагностируется при снятии «розы вибраций», когда датчик последовательно перемещается по огибающей вокруг подшипника со смещением при каждом измерении на угол 30 — 45 градусов.
  • Неправильный взаимный осевой монтаж активных пакетов ротора и статора. Иногда для данного дефекта используется термин: «неправильная установка электромагнитных осевых разбегов». При работе электрической машины, в результате сил магнитного притяжения, пакет ротора всегда стремится к положению точно под пакетом статора.

Если этому стремлению будут препятствовать неправильно смонтированные в осевом направлении подшипники, то в них будут возникать компенсирующие осевые усилия, которые и вызовут осевые вибрации подшипников. Подшипники достаточно быстро нагреются и выйдут из строя. Иногда ротор двигателя «утягивается» в осевом направлении валом механизма, что возможно при неправильном осевом монтаже приводного механизма, сопровождающемся малой осевой подвижностью в соединительной муфте.

Основные проблемы ротора, диагностируемые по вибрации:

  • Эксцентриситет внешней поверхности ротора относительно оси его вращения. На спектре вибросигнала этот дефект проявляется в усилении первой гармоники частоты вращения ротора. Усиливается частота действия электромагнитной силы, вокруг которой иногда появляются боковые гармоники, сдвинутые друг от друга на частоту скольжения ротора, умноженную на число полюсов.
  • Обрыв или нарушение контакта в стержнях или кольцах «беличьей клетки» в асинхронном двигателе. Обычно проявляется на спектре вибрационного сигнала вблизи частоты вращения вала ротора. Кроме того, этот дефект всегда сопровождается появлением вблизи основной гармоники частоты вращения ротора боковых гармоник, сдвинутых относительно гармоники частоты вращения ротора на интервал, равный произведению частоты скольжения на число полюсов двигателя. Очевидно, что этот дефект присущ только асинхронным двигателям, а в синхронных машинах он никак не проявляется.
  • Ослабление прессовки всего пакета стали ротора или только в области зубцов. Сопровождается усилением второй гармоники питающей сети или, при ослаблении стали в области зубцов, появлением пазовой частоты ротора с боковыми полосами, сдвинутыми друг от друга на частоту, равную двойной питающей частоте. Такой дефект на практике диагностируется достаточно сложно, так как его спектральные признаки напоминают признаки других дефектов, и проявляются не очень сильно, чаще всего неявно.

3.2.6.3. Диагностика электромагнитных проблем статора

При всех проблемах статора синхронной или асинхронной электрической машины, имеющих в своей основе первопричину электромагнитной природы, в спектре вибросигнала возникает весьма специфическая картина. В основном она сопровождается возникновением высокой амплитуды основной гармоники на частоте электромагнитных процессов FЭМ. Как уже неоднократно говорилось выше, ее частота равна удвоенной частоте питающей сети, т. е. всегда равняется 100 Гц. Еще раз напоминаем, что эта частота никак не связана с оборотной частотой вращения ротора.

Этот эффект достаточно хорошо объясняется с точки зрения физики происходящих в стали статора процессов. Силы взаимного притяжения, действующие между «распрессоваными» листами электротехнического железа или элементами крепления пакета стали, имеют максимум амплитуды дважды за один период изменения питающей сети — во время абсолютного минимума и максимума магнитного потока. Чем сильнее будет распрессован пакет статора электрической машины, тем большую амплитуду в спектре будет иметь основная электромагнитная гармоника.

Аналогично выглядит картина взаимодействия между элементами обмотки статора. Математически это объясняется тем, что электромагнитные силы пропорциональны квадрату тока или магнитного потока. Поскольку и тот и другой синусоидальны, то их произведение также пропорционально синусоиде, но изменяющейся уже с удвоенной частотой, относительно исходной частоты питающей сети.

На спектре вибрационного сигнала, приведенном на рисунке 3.2.6.1., картина появления электромагнитных проблем в статоре выражается в усилении пика на электромагнитной частоте. При значительных дефектах в стали могут появиться и вторая (200 Гц) гармоника электромагнитной частоты FЭМ, и даже третья (300 Гц).

Кроме того, в спектре может появиться также целый ряд дробных гармоник, имеющих кратность 1/2 от электромагнитной гармоники. В данной ситуации, по своей частоте, эти гармоники будут численно соответствовать нечетным целым гармоникам частоты питающей сети. Такое совпадение двух семейств гармоник усложняет их разделение частоте, требуя большей внимательности и применения дополнительных диагностических средств.

Очень важно хорошо понимать и помнить основное различие синхронных и асинхронных электрических машин, значительно влияющих на диагностику дефектов по спектрам вибрационных сигналов.

Гармоники вибрации от электромагнитных процессов в статоре синхронной машины, по своей физической природе, являются синхронными относительно частоты вращения ротора. В асинхронном двигателе эти же семейства гармоник являются несинхронными, т. к. частота вращения ротора и частота питающей сети не кратны между собой, а различаются между собой пропорционально частоте скольжения. В данном определении под коэффициентом кратности соотношений частот мы понимаем влияние числа пар полюсов обмотки, уложенной в пазах статора.

Ослабление прессовки активного железа статора в электрической машине обуславливается, в основном, двумя часто встречающимися причинами — или общим ослаблением элементов крепления железа статора, или же явлением «отслоения» крайних листов и пакетов стали.

При этих локализациях дефекта железа статора важную роль начинает играть место установки вибродатчика. Чем ближе он устанавливается к дефектному месту пакета статора, чем короче будет путь прохождения «полезного» вибрационного сигнала, тем более корректно можно будет проводить диагностирование и, достаточно часто, удается даже локализовать место проявления дефекта. Наиболее эффективно датчик вибрации устанавливать не на опорных подшипниках ротора, а непосредственно на корпусе сердечника статора, а еще лучше и на самом пакете активной стали.

Аналогично обстоит дело и с особенностями проявления в спектрах вибросигналов различных дефектов обмоток статора, но поиск их и локализация происходят гораздо сложнее. Более подробно мы рассмотрим этот вопрос в другом разделе данного руководства, однако основные требования к месту установки датчика вибрации останутся прежними – как можно ближе к возможному месту возникновения предполагаемого дефекта пакета или обмотки статора.

Самое главное, что нужно помнить при диагностике дефектов, что различить тип диагностируемого в статоре электрической машины дефекта, имеет — ли он «чисто электрическую природу возникновения», или же он обусловлен одними «магнитными проблемами», методами спектральной вибрационной диагностики практически невозможно. Единственный, достаточно корректный признак наличия короткозамкнутого витка в обмотке статора (электрическая причина возникновения повышенных вибраций) — наличие боковой гармоники вблизи частоты 100 Гц, и ее чаще всего обнаружить не удается. В большинстве практических случаев необходимо применение более специализированных методов диагностики состояния электрических машин.

3.2.6.4. Проблемы эксцентричности пакета статора

Эксцентриситет статора возникает чаще всего как дефект изготовления «шихтованного» пакета стали статора, или как дефект монтажа статора. Очень высока вероятность возникновения эксцентриситета статора в процессе монтажа электрической машины, особенно, если статор и подшипниковые опоры монтируются раздельно. Данный дефект статора может возникнуть в результате ослабления фундамента или как итог тепловых и иных деформаций в агрегате и фундаменте.

Для примера на рисунке 3.2.6.2. приведен спектр вибросигнала, зарегистрированного на подшипнике асинхронного двигателя, имеющего номинальную частоту вращения ротора, равную n0 = 1480 об/мин. Этот спектр соответствует наличию в электрической машине достаточно развитого дефекта типа «эксцентриситет статора».

Эксцентриситет статора приводит, с точки зрения физики протекания электромагнитных процессов, к периодическому изменению магнитной проводимости воздушного зазора, к ее пульсации, или, говоря иными словами, к ее модуляции. Эта пульсация происходит с удвоенной частотой сети, т. е. с частотой воздействия электромагнитных сил.

Удвоение частоты пульсации относительно питающей сети возникает из — за того, что мимо зоны окружности статора, где произошло изменение величины зазора, поочередно проходят и северный, и южный полюса электромагнитного поля, вращающегося в зазоре электрической машины. Удвоенные пульсации магнитной проводимости приводят к такой же пульсации магнитного потока и, как результат, к пульсации электромагнитной силы и вибрации с частотой 100 Гц.

Дополнительно несколько возрастает амплитуда гармоники на частоте вращения электромагнитного поля в зазоре. Это позволяет в асинхронных двигателях хорошо дифференцировать эксцентричность статора от эксцентричности ротора, где вибрация идет с частотой вращения ротора. Для выявления этого различия необходимо наличие спектроанализатора с хорошим разрешением.

Для разделения эксцентриситетов статора и ротора в синхронной машине между собой, при диагностике следует помнить, что эксцентриситет статора неподвижен в пространстве и различен по амплитуде вибрации в направлениях измерения вибрации. Благодаря такой локализации эксцентриситет статора приводит к возникновению направленной в пространстве вибрации. Это можно выявить при помощи последовательного перемещения вибродатчика по контролируемому подшипнику «вокруг вала». Эксцентриситет же ротора всегда «вращается» вместе с ротором, поэтому он не имеет стационарного максимума при определенном значении угла установки датчика. При эксцентриситете статора такой максимум явно выражен.

Для исключения проявления эксцентриситета в вибрации электрических машин необходимо, чтобы воздушный зазор между статором и ротором должен быть неизменным по окружности. Обязательно должно соблюдаться требование к качеству взаимного монтажа статора и ротора, что различие в величине воздушного зазора вдоль окружности не должно превышать значение в 5% для асинхронных двигателей и генераторов, и не превышать 10 % для синхронных двигателей. Значение этого параметра жестко контролируется при помощи специальных щупов при монтаже электрической машины. Такая процедура измерения должна производиться при нескольких взаимных положениях ротора и статора.

3.2.6.5. Эксцентричный ротор

Это достаточно часто встречающаяся в практике причина повышенной вибрации асинхронных электрических машин. У синхронных электрических машин переменного тока этот дефект менее заметен из-за больших рабочих зазоров.

При наличии эксцентриситета ротора в характере распределения электромагнитного поля в зазоре двигателя возникает ряд особенностей. Плотность электромагнитного поля вдоль окружности зазора изменяется вместе с поворотом ротора. Это приводит, из-за переменного зазора, к неравномерности тягового усилия двигателя. При совпадении оси поля статора с зоной увеличенного зазора тяговое усилие несколько уменьшается, при этом возрастает величина частоты скольжения. При смещении оси поля в зону меньшего зазора тяговое усилие растет, частота скольжения падает. При числе пар полюсов статора, большем единицы, такой процесс повторяется «Р» раз.

Если бы мы имели очень чувствительные приборы для измерения частоты вращения ротора, то мы бы обнаружили следующее. В интервале перемещения ротора от зоны, с увеличенным зазором в сторону зоны, с уменьшенным зазором, ротор бы ускорился в своей частоте вращения на небольшое значение. На интервале перехода ротора обратно, к зоне с увеличенным зазором, ротор бы замедлился на то же значение. Конечно, таких приборов у нас нет, но это видно на спектре с большой разрешающей способностью, где появляются признаки таких изменений скорости.

На спектре вибросигнала, показанном на рисунке 3.2.6.3., вокруг основной частоты вращения ротора, должны появиться симметрично расположенные боковые пики, гармоники, напоминающие зубцы короны. Симметрия пиков относительно основной частоты достаточно хорошо понятна — это следствие «мини ускорений и мини замедлений» частоты вращения ротора вокруг своего среднего значения. Аналогичные зубцы, даже еще большей интенсивности, появляются и вокруг пика электромагнитной силы, на частоте, равной второй гармонике питающей сети.

Необходимо пояснить причины проявления эксцентричности ротора на этой частоте.

Вращение эксцентричного ротора модулирует проводимость зазора с удвоенной частотой. При числе пар полюсов, равном единице частота вращения поля равна 50 Гц, удвоенная частота сети, частота электромагнитной вибрации равна 100 Гц. Эксцентричность ротора приводит к модуляции электромагнитной силы. При уменьшении числа пар полюсов частота вращения поля в зазоре уменьшится в Р раз. Переменный зазор ротора за один свой оборот будет модулировать электромагнитную силу 2 х Р раз больше частоты своего вращения, что как раз и соответствует частоте электромагнитной силы.

Эксцентричный ротор генерирует вокруг FP и вокруг FЭМ семейства гармоник, представляющих из себя пики, сдвинутые на одинаковый шаг по частоте. Сдвиг между этими гармониками равен произведению частоты скольжения на число полюсов обмотки статора

DF = FS * 2 * P

Причина такого шага между зубцами на спектре по частоте достаточно корректно объясняется. Частота скольжения есть разностная частота биений между частотой вращения поля и частотой вращения ротора. В течении одного оборота эксцентриситет ротора влияет «2 х Р» раз на тяговое усилие двигателя, которое связано с частотой скольжения ротора. Сама частота скольжения FS иногда видна на спектре, на начальном участке, на самой низкой частоте. Она проявляется обычно в диапазоне от 0,3 до 2,0 Гц. Для ее регистрации нужен низкочастотный датчик.

Необходимо помнить, что во временном сигнале эксцентриситет ротора проявляется в виде пульсирующей вибрации, средняя частота которой располагается в диапазоне частот (или вблизи него) между FЭМ и гармоникой оборотной частоты ротора, по частоте чуть меньшей, чем у электромагнитной силы (порядковый номер этой гармоники ротора равен удвоенному числу пар полюсов статора). Разделить эти гармоники на спектре можно только при высоком частотном разрешении используемого анализатора вибрационных сигналов.

Эксцентричность ротора обычно проявляется и в вертикальной, и в поперечной проекции вибрации. Иногда ее удается обнаружить даже и в осевой проекции. Так бывает при наличии эксцентричности ротора не по всей его длине, а только в районе одного, если смотреть вдоль оси ротора, края пакета электротехнической стали.

Эксцентричность ротора часто носит нестационарный характер, когда в спектре работающего двигателя имеется характерная картина, а практические измерения зазора не подтверждают диагноз. Причина здесь обычно в термических процессах, когда по тем или иным причинам ротор несимметрично нагревается, изгибается и дает картину эксцентриситета.

После останова двигателя, в процессе его разборки для измерения зазора, температуры быстро выравниваются и диагноз не подтверждается. Часто так бывает при обрывах стержней или «частичных задеваниях» ротора об неподвижные элементы, когда ротор так же начинает односторонне нагреваться.

3.2.6.6. Неправильный осевой монтаж двигателя

Принцип действия всех электрических машин переменного тока примерно одинаков — вращающий момент создается за счет взаимодействия магнитного поля статора с магнитным полем ротора (синхронные машины) или с роторными проводниками с током (асинхронные машины).

Простейший аналог, характеризующий работу синхронной электрической машины переменного тока – притяжение двух постоянных магнитов, из которых один есть вращающееся магнитное поле статора, а второй жестко зафиксирован на роторе. В асинхронной машине переменного тока все выглядит немного иначе – вращающееся магнитное поле статора увлекает за собой проводники с током, которыми являются стержни короткозамкнутой клетки ротора.

В синхронном электродвигателе машине энергия подается одновременно в ротор от источника постоянного тока, и в статор из питающей промышленной сети. В асинхронном электродвигателе внешняя энергия подается только из питающей сети в статор, поэтому для работы двигателя часть энергии должна быть передана (трансформирована) через зазор во вращающийся ротор. Только в этом случае возникает электромагнитное взаимодействие между полями ротора и статора. Наличие передачи энергии через зазор объясняет необходимость максимального уменьшения воздушного зазора в асинхронных машинах, а так же их большую чувствительность этого типа электрических машин к нелинейности величины зазора между ротором и статором.

Сила взаимного притяжения между ротором и статором является векторной величиной и состоит из трех составляющих — радиальной составляющей, касательной, полезной, и осевой. Касательная составляющая электромагнитной силы в зазоре является полезной, т. к. именно она создает вращающий момент. Радиальная составляющая есть сила притяжения ротора к статору и при постоянстве величины воздушного зазора эти силы, диаметрально противоположно, взаимно компенсируются.

Рассмотрим чуть подробнее осевую составляющую сил взаимного притяжения в зазоре электрической машины. Если магнитные сердечники ротора и статора в осевом направлении расположены непосредственно друг против друга, то и суммарная осевая составляющая силы электромагнитного притяжения ротора и статора равна нулю. Иначе будет происходить в том случае, когда произойдет взаимное осевое смещении сердечников ротора и статора. При этом итоговая осевая сила не будет равна нулю, она будет стремиться вернуть ротор в исходное нейтральное положение. Чем больше будет величина осевого смещения, тем больше будет величина осевого усилия, втягивающего ротор внутрь статора.

Величина допустимого свободного осевого перемещения ротора относительно статора определяется особенностями монтажа опорных подшипников ротора. Она максимальна при использовании подшипников скольжения, и минимальна при использовании подшипников качения, особенно радиально – упорного типа.

Если осевая подвижность ротора достаточна для перемещения его в нейтральное положение, то проблем с увеличением вибраций не будет. Если же возникнет препятствие к такому осевому перемещению, то на нем возникнет значительная осевая вибрация. Частота этой вибрации, как это показано на рисунке 3.2.8.4., обычно равняется частоте электромагнитных сил. Иногда гармоники вибрации возникают и частоте вращения ротора, это зависит от состояния поверхностей в месте препятствии к осевому смещению. Наиболее часто такая проблема возникает у асинхронных электродвигателей с подшипниками качения, осевая подвижность которых почти нулевая.

Осевая вибрация в электродвигателях, оборудованных подшипниками качения, обычно возникает при следующих основных причинах:

  • При осевом смещении магнитных пакетов статора и ротора, обусловленном особенностями их взаимного первичного монтажа.
  • При неполной посадке подшипников на вал, или в подшипниковых щитах, после проведения ремонтных работ.
  • При смещении подшипниковых щитов, или посадочных мест подшипников после выполнения ремонтных и восстановительных работ.

Вне зависимости от причины возникновения повышенных осевых усилий на опорные подшипники качения, это довольно опасный дефект. Большинство подшипников качения не предназначены для компенсации осевых усилий, и поэтому в такой ситуации достаточно быстро выходят из строя.

У подшипников скольжения обычно существует больший конструктивный «осевой разбег», поэтому осевые вибрации в них возникают гораздо реже. Кроме того, подшипники скольжения обычно используются в крупных синхронных электрических машинах, в которых вопрос компенсации осевых усилий, по причине наличия больших воздушных зазоров, стоит менее остро.

Тем не менее, и в таких условиях осевая подвижность подшипников скольжения может оказаться недостаточной для компенсации дефектов монтажа. В таком случае возникает осевая вибрация, обычно выражающаяся в возникновении трения галтели вала о торцевую поверхность подшипникового вкладыша.

Для устранения осевой вибрации в насосных агрегатах необходимо корректно и комплексно выставлять при монтаже все три так называемых в практике «осевых разбега», расположенных в насосе, в муфте и в электродвигателе.

Достаточно часто вал электродвигателя «утягивается в осевые вибрации» валом насоса при дефектах системы осевой разгрузки рабочего колеса насоса. Парадокс диагностики — дефект в насосе, а вибрация в двигателе.

На практике бывают случаи, когда для борьбы с осевыми вибрациями ротор в подшипниках скольжения, перед пуском, принудительно смещают в осевом направлении, например, при помощи лома, и после этого двигатель некоторое время хорошо работает. С течением времени, в процессе работы, ротор смещается обратно, и осевые вибрации агрегата снова возрастают до прежнего значения.

3.2.6.7. Обрыв стержней ротора

Наиболее распространенным конструктивным исполнением обмотки ротора асинхронного двигателя является короткозамкнутый ротор с «беличьей клеткой». У такого ротора в пазах, без изоляции, забиваются медные или латунные стержни, или же пазы полностью залиты сплавом алюминия. Концы стержней, по торцам ротора, объединяются замыкающими кольцами из такого же материала.

В процессе работы, а особенно при пуске асинхронного электродвигателя, по стержням беличьей клетки протекает большой ток, и они сильно нагреваются. Частой причиной выхода из строя двигателя является нарушение контакта стержней с замыкающими кольцами, называемые в практике «отгоранием стрежней». Появление такого дефекта в отдельных стержнях приводит к увеличению нагрузки на оставшиеся стержни, дополнительному перегреву их, и также к последующему «отгоранию», и т. д. Весь этот лавинообразный процесс разрушения обмотки ротора сопровождается потерей мощности электродвигателя, к его постепенному перегреву и выходу из строя.

Выявление начальных признаков повреждений стержней клетки ротора является очень актуальной задачей и позволяет повысить надежность работы асинхронных двигателей с короткозамкнутой клеткой на роторе.

Рассмотрим особенности физических процессов и вибрационных признаков этого в роторе, имеющем характерные признаки начальной стадии данного дефекта. Будем считать, что повредился один стержень короткозамкнутой клетки.

Необходимо сразу же сказать, что спектр вибрации асинхронного электродвигателя с отгоревшим стержнем во многом похож на спектр вибрации двигателя, имеющего эксцентричный ротор. На первый взгляд между этими дефектами мало общего, но при ближайшем рассмотрении можно выявить причины возникновения сходства вибрационных сигналов, зарегистрированных на опорных подшипниках.

Как и при эксцентричном роторе, отгоревший стержень приводит к модулированию величины тягового усилия двигателя. В момент прохождения зоны отгоревшего стержня мимо электромагнитного полюса (скорее наоборот, т. к. поле асинхронного электродвигателя обгоняет ротор) тяговое усилие импульсно уменьшиться, ротор чуть-чуть замедлится. В это время под полюс поля подойдет зона бездефектного стержня, в нем за счет возросшего скольжения будет несколько больший ток, тяговое усилие также импульсно возрастет, и ротор чуть-чуть ускорится.

Эти импульсные мини ускорения и мини замедления ротора на спектре будут характеризоваться возникновением боковых зубцов вокруг основной гармоники частоты вращения ротора. Такой спектр для двигателя с частотой вращения ротора 2920 об/мин показан на рис 3.2.6.5. Понятно, что зубец (гармоника) с чуть меньшей частотой будет соответствовать моменту времени с замедлением, а зубец (гармоника) с чуть большей частотой будет принадлежать участку времени с ускорением ротора.

Сразу же напрашивается аналогия, что если поврежденных стержней в роторе будет не один, а два, то боковых гармоник будет по две с каждой стороны оборотной частоты, если будет три дефектных стержня – три пары боковых гармоник, и так далее. Это так, и не так. Примерно в половине практических случаев такой эффект соответствия количества дефектных стержней и боковых гармоник будет соблюдаться, а в половине случаев такого количественного соответствия не будет.

Корректное описание такой особенности картины спектрального отображения «дефектных» стержней на спектре вибрационных сигналов является очень сложным, и мы его здесь опустим. Мы ограничимся простой констатацией факта, что если боковых гармоник на спектре более двух (пар), то на роторе находится больше двух отгоревших стержней, или, говоря точнее, стержней с дефектами контакта. Если боковых гармоник всего две, то количество стержней с дефектами точно не определено.

Разделить две причины повышенной вибрации, о которых мы начали рассуждение, это эксцентриситет ротора и отгоревшие стержни беличьей клетки, возможно, но только при наличии у диагноста «хорошего анализатора спектров вибрационных сигналов». В данном случае речь идет о хорошем спектральном разрешении прибора, он должен рассчитывать спектры с разрешением не хуже 3200 частотных линий. В этом случае дефекты можно разделить, учитывая особенности различия их спектрах вибрационных сигналов.

Это следующие различия:

  • Характерная «корона» из зубцовых гармоник вокруг пика электромагнитной частоты FЭМ проявляется на спектре различно — при эксцентриситете ротора она имеется во всех режимах работы диагностируемой электрической машины. При наличии в роторе дефекта типа «дефектный стержень», корона на спектре появляется только при значительной нагрузке электрической машины, на холостом ходу она отсутствует.
  • При эксцентриситете ротора «корона» практически симметрична по величинам зубцовых гармоник относительно центрального пика, а при дефектах стержней пик на меньшей частоте всегда меньше «зеркального» пика на большей частоте. Этот факт достаточно хорошо сообразуется с картиной физических процессов. Уменьшение скорости происходит при нормальном скольжении и нормальном токе в последнем (перед дефектным) «хорошем» стержне клетки. Ускорение же ротора происходит при увеличенном скольжении, большем токе в первом «хорошем» стержне и, как результат, с большим ускорением.
  • За счет колебательного «успокоения» пульсации частоты вращения ротора, после прохождения стержня с дефектом, что может возникать при определенных параметрах нагрузки на валу электродвигателя, на спектре вибрационного сигнала может возникнуть несколько гармоник частоты вращения ротора, и обычно все они окружены «коронами». Такая же картина может возникать при наличии механических или электромагнитных ослаблений в электрической машине. Параметр «электромагнитное ослабление» раскрывать мы не будем из-за его специфичности, оставив его для исследования специалистам по электрическим машинам.

В качестве численного ограничения степени проявления этого дефекта можно считать, что «короны» у исправного двигателя быть не должно. Если она появилась, и наибольший пик «короны» превысил 10 % от центрального пика — вероятность существования отгоревших стержней в обмотке ротора очень большая. Для контроля количественного значения признаков этого дефекта лучше использовать спектры с логарифмической шкалой по амплитуде. Если на нем пики «короны» будут меньше основного пика менее, чем на 20 dВ, то предполагаемый дефект имеет место.

В заключение, подчеркивая особенности диагностики данной причине повышенной вибрации, необходимо еще раз указать, что такая диагностика возможно только с применением анализаторов спектров с высокой разрешающей способностью. Это нужно для разделения на спектре частот вращения поля, ротора и боковых гармоник. Центральный пик «короны» должен соответствовать частоте вращения ротора, а не быть равным частоте вращения поля в зазоре.

3.2.6.8. Дефекты зубцово — пазовой структуры

Такая неисправность не очень часто встречается в практике, но, тем не менее, ее можно достаточно просто описать и успешно диагностировать.

Условно эту неисправность можно представить в виде ротора, у которого отсутствует один ферромагнитный зуб. Это приводит к тому, что мимо пазов статора перемещается «магнитный непериодический» элемент, наводящий в обмотке статора импульсы, число которых за один оборот будет численно равно числу пазов на статоре. На спектре вибрационного сигнала это будет представлено пиком на частоте, равной произведению частоты вращения ротора на число пазов статора.

Не вдаваясь в тонкости физического описания, следует также сказать, что дефектный зуб будет модулировать и электромагнитную силу статора. Это будет происходить потому, что дважды за свой один оборот вращающееся поле «будет натыкаться» на дефект магнитной проводимости воздушного зазора двигателя, на «отсутствующий» зуб ротора. На спектре вблизи пика зубцовой частоты появятся два зеркально расположенных пика, сдвинутых относительно своего «главного пика» на частоту электромагнитной силы FЭМ, как уже неоднократно говорилось равную удвоенной частоте питающей сети.

Наиболее сложным для диагностики будет спектр вибрации при наличии магнитных дефектов на роторе и статоре одновременно, причем дефектов множественных. На спектре будут присутствовать зубцовые частоты ротора и статора, а также будут частоты их биения, зашумленные множественными «зеркальными» пиками.

«Положительным» при этом будет то, что при таком дефекте обычно сильно падает тяговое усилие, возрастает потребляемый ток и двигатель очень быстро выходит из строя, обычно раньше, чем персоналу удается записать спектры и выявить множественный магнитный дефект методами вибрационной диагностики.

Приборы нашего производства для диагностики электромагнитных дефектов

  • ViAna-4 – универсальный 4-хканальный регистратор и анализатор вибросигналов, диагностика электромагнитных дефектов по току

Контакторы: для чего нужны и как работают

Контакторы: для чего нужны и как работают

Контакторы — это электромагнитные устройства, состоящие из двух позиций, аналогичных электромагнитным элементам. Особое назначение контакторов состоит в дистанционном управлении электрическими сетями и коммутации номинального тока. С помощью данного аппарата производят отключение и подключение элементов электрической цепи. Конструкция контакторов включает в себя подвижный элемент, катушки, пружины и замыкающиеся группы контактов.

Подобные детали включают в себя магнитную и контактную систему, а также вспомогательные блок-контакты для цепей сигнализации. Удаленное управление механизмом позволяет использовать прибор в системах освещения, обслуживании лифта, бытовых и коммунальных вопросах. Контакторы востребованы в строительной, промышленной и транспортной сферах. Благодаря работе этих соприкасательных устройств достигается автоматизация разных видов электрооборудования и техники.

Разновидности и различия контакторов

Контактор может относиться к одной из нескольких групп, от которых зависит назначение и принцип использования. Чтобы управлять постоянным током, необходимо выбрать подходящий вариант из ассортимента продукции.

По виду электрического напряжения тока контакторы делятся на две группы:

  • Постоянное. Эксплуатация данных аппаратов подразумевает использование совместно с оборудованием небольшой мощности. Вольтаж составляет 220 или 440 В. Работа устройства происходит с участием электромагнитного элемента. Предназначение — переключение направлений сетей с постоянным электротоком.
  • Переменное. Имеется поддержка повышенного напряжения (660 В). Механизм состоит из трех полюсов и короткозамкнутого элемента (виток). Эти особенности направлены на снижение шума и вибрационных колебаний от работающего движка. Потребность в электропитании перекрывается подачей однофазного тока в переменных сетях.

Существуют разные типы сборки и конструкции. Контакторы бывают оснащены разными дополнительными системами: с одним полюсом, два полюса, с тремя полюсами и четырехполюсные. Разбор на подвиды обусловлен наличием определенного количества элементов в главной контактной группе. Наибольшее число увеличивает функциональность и мощность аппаратуры.

контактор 40А

В контакторах с двумя полюсами находится центральная пара контактов, которые не касаются основания корпуса. Трехполюсный механизм оснащен тремя главными контактами и одним вторичным (дополнительным) для работы в трехфазной сети. Изделия с одним и двумя полюсами наиболее востребованы, чем остальные виды конструкций.

По оснащению:

  • Наличие дугогасительной дуги;
  • Без дугогасительной системы.

Контакторы также могут иметь дополнительную дугогасительную систему или быть без этой функции. Функционал с вольтажом 200 В может не быть оснащен подобной системой, однако в сетевой нагрузке с вольтажом (380 В или 600 В) данная опция обязательна.

Этот способ позволяет погасить возникшие электрические дуги при повышенном электронапряжении. Это происходит в обособленных камерах при помощи поперечного воздействия электромагнитного поля. Дополнительные опции обеспечивают комфортную и безопасную эксплуатацию и соответствие техническим стандартам.

Типы приводов у контактора бывают: электромагнитными, пневматическими и гидравлическими. Способ разрыва сети существует одинарный (электромагнитный элемент) или сдвоенный (быстрое погашение электрических дуг).

Управлением по типам:

  • Механические способы (ручной);
  • Дистанционные методы коммутаций (линий слабого тока).

Как работает контактор

Устройство осуществляет рабочий процесс посредством смыкания движущихся контактов и последующим размыканием неподвижной группы. Каждое действие позволяет пропустить или не пропустить электроток. Аналогичные опции выполняют стандартные переключатели . Контактор имеет специфические отличия от обычного выключателя: положение контактов и оснащение дополнительными деталями для повышенной безопасности.

Разомкнутое положение группы контактов считается нормальным для прибора. Нельзя зафиксировать включенные контакты с помощью механических средств. Подобного способа не предусмотрено. При подаче напряжения цепь смыкается, при отсутствии — размыкается. Контактор является сложным видом переключателя, поэтому для него установлены высокие требования по безопасности и качеству.

контактор С10

Главные принципы работы:

  • Совокупность контактных систем;
  • Воздействие с электромагнитными механизмами;
  • Возвращение в начальное расположение.

Дополнительные контакты могут иметь подвижное или установленное положение в конструкции прибора. Магнитный электрический механизм представляет собой систему, состоящую из якорного компонента, сердечниковой детали и нескольких катушек. Воздействие специальной пружины позволяет группе контактов принимать изначальную позицию. С помощью воздействия направляющего напряжения тока, происходит магнетизация сердечника, который обладает притяжением к якорным элементам. Якорь оснащен площадкой, где находится движущаяся группа контактов и электронных элементов. При движении якорной детали группа подвижных контактов взаимодействует с неподвижными. Подобным образом замыкается электрическая цепь.

Характеристики контакторов

Чтобы подобрать подходящее оборудование, необходимо иметь понимание о потребностях, назначении и характеристиках прибора. Контакторы различаются между собой по многим признакам. Главные отличия состоят в технических характеристиках и определенной мощности устройства, а также в принципе работы.

Основные свойства:

  • Вид напряжения (номинальное или предельное);
  • Защита от короткого замыкания;
  • Взаимодействие с автоматическими переключателями;
  • Свойство регулятора для ускорения выключателя;
  • Характерные особенности и параметры сопротивления;
  • Специфика расцепителя и прочих деталей конструкции.

Контакторы могут обладать разным уровнем номинального напряжения или родом электротока. Управляющая цепочка также различается по характеру токовой проводимости и номинальному напряжению. В конструкции установлено определенное количество полюсов, от которых зависит дальнейшее использование аппарата. Могут присутствовать второстепенные блоки, дополнительные системы и контакты.

Особенности корпуса и сборки влияют на установку электронного компонента. Детали в конструкции бывают съемными или встроенными, которые не получится снять. Способы крепления бывают разными и зависят от выбранного метода и места установки. Метод подвода проводов обусловлен спецификой сборки. Уровни безопасности и защитные функции прибора влияют на работоспособность и энергоемкость.

Чем отличается контактор от магнитного пускателя

Механизм контактора имеет схожесть с конструкцией магнитного пускателя, поэтому иногда происходит путаница в понятиях. По своему определению оба устройства выполняют аналогичные функции. Разница заключается в предназначении каждого прибора. Контактор является изделием с единым блоком, обеспечивает коммутацию электросетей и служит выключателем.

  • Количество контактов;
  • Полюсы;
  • Назначение;
  • Реле (тепловое).

Магнитные пускатели (другое название реле) — это электромагнитная аппаратура, предназначенная для защиты и экстренного раскрытия цепи в условиях перегрева. Главное предназначение пускателя состоит в обеспечении электротехнической безопасности. В устройство входит группа контакторов и дополнительные управляющие системы для повышения защитных функций.

Среди коммутирующих приборов есть промежуточные виды реле. Они представляют из себя аппарат с небольшой мощностью. Промежуточный подтип используется для работ в цепи со слаботочными линиями. По сравнению со стандартными контакторами, промежуточный пускатель (реле) выдерживает большее количество размыканий элементов цепи.

Сферы использования контактора

  • Для управления электрическими двигателями;
  • Коммутация компенсационных электрических цепей мощности реактива;
  • Коммутация постоянных повышенных токовых передач;
  • Монтаж электрофурнитуры;
  • Электромонтажные работы;
  • Эксплуатация электросетей;
  • Запуск мощных промышленных двигателей;
  • Установка электротехнических изделий.

Контактор является неотъемлемой деталью для дистанционного или механического управления мощным двигателем. Благодаря этому элементу можно управлять лифтовыми системами, тепловозами, троллейбусами, трамваями и электрическими поездами. Многие промышленные процессы и сферы зависят от работы контактора, который обеспечивает удобство и скорость управления. Благодаря выключателю контактов происходит полноценная коммутация силовой и электрической сети.

контактор Legrand

Контакторы используют в электроустановочных процессах. Применение прибора значительно упрощает взаимодействие с электрической сетью. С помощью него производят организацию схемы с автоматическим вводом резерва. Элементы устанавливают на din-рейку в распределительный щит. Модульный вид контактора нужен в жилом помещении или квартире, чтобы обеспечить бесперебойное и комфортное управление светом. Рабочий процесс прибора практически бесшумный, поэтому его можно применять в муниципальных учреждениях, зданиях, больницах, школах и детских садах.

Схемы подключения контакторов

Желательно ознакомиться и уточнить:

  • Маркировка;
  • Место ввода питания;
  • Подключение проводов;
  • Активация дополнительных систем.

Среди ассортимента электротехнических изделий можно найти несколько видов и конструкций модульных контакторов. Установка подобного прибора должна производиться в строгом соответствии с рекомендациями и стандартами безопасности. Каждый электрический продукт должен иметь соответствующую документацию, где указаны его технические характеристики и инструкция по работе с продукцией. В сопутствующих материалах находится схема подключения, которая должна быть расположена также и на корпусной основе изделия.

Схема для подключения контактора — это визуальное представление процесса монтажа и взаимодействия компонентов. В этой информации может правильно разобраться только опытный электрик. Неподготовленному человеку сложно вникнуть в непонятные термины электроустановочной конструкции. При любом способе подключения важно учитывать нюансы установки контактора. Неправильное подключение повлияет на работоспособность компонентов и безопасность последующей эксплуатации.

Существуют распространенные виды схем:

  • Использование совместно с катушкой (220В);
  • Активация кнопочных режимов — стоп и пуск;
  • Асинхронные двигатели (380В) и пускательный элемент (220В);
  • Реверсивное подключение;
  • Силовая схема.

При любом способе подключения существуют силовые и сигнальные сети. Сигнальный вид сети влияет на запуск контакторов, которые служат для замыкания силовой линии. Для взаимодействия с асинхронными двигательными аппаратами повышенной мощности нужно использовать в подключении тепловой тип реле. Элемент служит для защиты от короткого замыкания и повышенных напряжений, перегревов.

Как оказалось, выяснить особенности контакторов, узнать особенности состава и подключения не так уж сложно. На срок работоспособности коннектора влияет метод подключения. Грамотная установка системы положительно влияет на долгосрочную эксплуатацию. Монтаж необходимо производить при отключенной электроэнергии с соблюдением технических и безопасных правил установки. При возникновении сложностей рекомендовано обратиться к профессиональному электрику.

Другие статьи

Принцип работы и схемы подключения реле контроля фаз

Принцип работы и схемы подключения реле контроля фаз

Реле контроля фаз – это компонент электроустановочной схемы, который играет ключевую роль в обеспечении стабильной и безопасной эксплуатации электрооборудования, предотвращая повреждения технических устройств и аварии. Чтобы понять его функциональность и область применения в электротехнической сфере, необходимо изучить основные параметры работы устройства.

Как установить тройную розетку в один подрозетник

Как установить тройную розетку в один подрозетник

Современные квартиры оснащаются все большим количеством бытовой техники. Поэтому спрос на большее количество розеток растет постоянно, особенно в больших помещениях. Для решения этой проблемы многие владельцы квартир предпочитают устанавливать блоки из трех и более розеток.

Что такое кабель-канал и для чего он нужен

Что такое кабель-канал и для чего он нужен

По сути, кабель-канал — это короб, в который помещается один или несколько электрических проводов или кабелей. Он может быть изготовлен из металла, пластика, стекловолокна или других материалов в зависимости от его предназначения. Кабель каналы обычно устанавливаются в стенах или потолках для защиты проводки от физических повреждений и влаги.

Сенсорный выключатель что это и как выбрать

Сенсорный выключатель что это и как выбрать

Сенсорный выключатель — это электронное устройство, которое позволяет пользователю управлять электрической цепью простым прикосновением к металлической поверхности. Он работает, ощущая присутствие вашего пальца, а затем активируя реле или другой переключатель на основе контакта. Этот тип переключателей часто используется в таких приложениях, как бытовая техника, системы управления освещением, системы безопасности, системы входа в дверь и многое другое.

Замена проводки в квартире самостоятельно. Что нужно знать

Замена проводки в квартире самостоятельно. Что нужно знать

В повседневной жизни многие люди не задумываются о неисправностях, которые могут возникнуть с электросетями. Иногда электропроводку заменяют только в экстренных случаях, когда уже других вариантов просто не остается. Чтобы не доводить до крайностей, необходимо вовремя определить срок замены сети. Лучше сделать это немного раньше, чем позже: эффективные электромонтажные работы обеспечивают безопасное проживание и взаимодействие с электроприборами.

Особенности подключения электропроводки в деревянных домах

Особенности подключения электропроводки в деревянных домах

Частные дома, коттеджи и дачи обычно строят из древесины. Это легкий в использовании и довольно доступный материал, который позволяет создавать жилые постройки и сооружения. Кроме очевидных преимуществ, у деревянных панелей есть и некоторые недостатки: подверженность внешнему воздействию, влиянию влаги и возгоранию. Если пожар случается в деревянном доме, огонь достаточно быстро распространяется по всему помещению и перекидывается на другие объекты.

Что такое заземление в квартире и для чего оно нужно

Что такое заземление в квартире и для чего оно нужно

Заземлением называется соединение электротехнических изделий, приборов и элементов оборудования с компонентом, выполняющим заземляющую функцию. Данное понятие применяется в эксплуатации электрофурнитуры и других токопроводящих приборов, работающих от электрической сети.

Электрические счетчики: как правильно подключить, рекомендации по выбору

Электрические счетчики: как правильно подключить, рекомендации по выбору

Электрический счетчик представляет собой электротехническое устройство, которое измеряет количество расходуемой энергии тока (переменного и постоянного). Электросчетчик незаменим для ведения учета используемой электроэнергии в любых помещениях: дом, квартира, склад, офис, магазин и другие муниципальные, частные и общественные площади

Как установить подрозетники на разные виды поверхности

Как установить подрозетники на разные виды поверхности

Подрозетник представляет собой электрофурнитуру для более качественной установки электрической розетки. Это изделие имеет форму стакана или коробки с гладкой внутренней поверхностью и зубчатой внешней стороной (для лучшей сцепки со стеной).

Встраиваемые розетки в столешницу: особенности и плюсы использования

Встраиваемые розетки в столешницу: особенности и плюсы использования

Врезная розетка в столешнице – это электротехническое изделие, аналогичное по свойствам обычной розетке. Назначение этого прибора – подключение устройств к электрической сети. По сравнению с другими видами, встраиваемая розетка выигрывает по многим параметрам.

Импульсное реле для управления освещением

Импульсное реле для управления освещением

Для небольшой квартиры, офиса и даже производственного помещения классический способ включения/выключения каждого осветительного прибора отдельно достаточно удобен. Но в просторном коттедже, многоэтажном доме, на промышленном предприятии требуется автоматизация управления освещением. Одним из таких вариантов будет использование импульсного реле.
Устройство способно решить сложные инженерные задачи по проектированию современных систем электрификации. При этом их нетрудно подстроить под оборудование, подвергающееся постоянному усовершенствованию. Постепенно импульсные приборы вытеснят классические схемы, основанные на проходных выключателях.

Электрический щит: советы по сборке и монтажу

Электрический щит: советы по сборке и монтажу

Устройство, которое распределяет поступающую в него электрическую энергию на несколько потребителей, называется электрическим щитом. Для сокращенного наименования приборов используются разные аббревиатуры, например ВРУ (вводно-распределительное устройство). В многоэтажном подъезде, где находится много квартир, электрощит берет мощность из трансформаторных подстанций, впоследствии распределяя ее по разным этажам, на которых имеются свои приборы. В каждой квартире имеется отдельный щит, распределяющий энергию до конечного пользователя: телевизор, ноутбук, компьютер, настольная лампа, фен и прочие бытовые атрибуты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *