Какие элементы должна включать схема зануления
Перейти к содержимому

Какие элементы должна включать схема зануления

  • автор:

Что такое зануление простыми словами

Для защиты от поражения электрическим током используются два вида проводников — заземление и зануление. В сетях с глухозаземлённой нейтралью это похожие понятия, так как оба провода на подстанции соединяются с нулевой точкой вторичной обмотки и контуром заземления. Однако между землёй и нейтралью есть отличия в способе монтажа и области применения. Поэтому при прокладке и подключении электросетей важно чётко понимать, что такое зануление.

Для чего нужно зануление

Согласно ПУЭ п.1.7.31 занулением является искусственно выполненное соединение электроприбора с нейтралью питающего трансформатора. В электросетях 380/220 В имеются два типа зануления — рабочее и защитное. Как правило, если речь идёт о занулении, имеется в виду именно защитная функция этих проводников

Если назначение зануления, которое используется в качестве нейтрали в трёхфазной сети, заключается именно в разделении линии 380 В на три однофазных линии 220 В и для других целей в квартирной электропроводке использовать её запрещено ПУЭ п.1.7.132 , то защитное зануление, как видно из его названия, предназначено для защиты людей от поражения электрическим током.

назначение зануления_naznachenie zanuleniya

Этот провод присоединяется к металлическим элементам корпуса электроприбора и при повреждении изоляции между этими деталями и другими частями электросхемы возникает короткое замыкание. Принцип работы защитного зануления заключается в отключении аппарата от сети автоматическим выключателем или предохранителями при появлении тока утечки большой величины через повреждённую изоляцию.

Принцип действия защитного зануления

Защитное зануление используется для предотвращения электротравм при прикосновении к корпусу оборудования с повреждённой изоляцией. Принцип действия защитного зануления заключается в возникновении сверхтока при коротком замыкании внутри электроприбора.

Ток, протекающий при этом по нулевому проводу, должен обеспечить время срабатывания автоматического выключателя не более 0,4 с.

Вторым фактором, повышающим электробезопасность, является снижение потенциала на корпусе электроприбора до величины напряжения нейтрали, однако это увеличивает защищённость людей не во всех ситуациях.

принцип работы зануления

В городе с небольшими расстояниями до подстанции зануление понижает напряжение до 2-3 В, но в сельской местности при большой протяжённости линии электропередач, малом сечении проводов и неравномерном распределении нагрузки потенциал на занулённом корпусе может достигать 50-70 Вольт.

В этом случае прикосновение к исправному аппарату будет болезненным и даже опасным, поэтому использование зануления в однофазных сетях запрещено.

Информация! В сети 220 В вместо защитного зануления устанавливается УЗО или дифавтомат и подключается защитное заземление.

Требования в нормативных документах

Одним из основных документов, регламентирующих требования к защитному занулению, является ГОСТ 12.1.030-8. Согласно этому ГОСТу, данное средство защиты должно соответствовать следующим параметрам:

  • при нарушении изоляции должна соблюдаться селективность защиты и происходить отключение ближайшего к месту повреждения защитного устройства;
  • в цепи защитного зануления должны отсутствовать автоматические выключатели и разъединители, кроме устройств, обеспечивающих одновременное отключение всех проводов сети;
  • сопротивление контура заземления, к которому подключен нейтральный провод, в сети 380/220 В должно быть не более 4 Ом;
  • время отключения в аварийной ситуации не более 0,4 с.

Эти требования аналогичны тем, которые предъявляются к защитному заземлению и обеспечивают достаточно надёжную защиту от поражения электрическим током.

Область применения зануления

Большинство трёхфазных электроустановок подключены к сети при помощи четырёхжильного провода, в котором имеются три фазных проводника и нейтраль. В сетях 0,4 кВ нулевой проводник одним концом присоединяется к заземлённой средней точке вторичной обмотки питающего трансформатора и при подключении второго конца провода к корпусу электроустановки получается защитное зануление.

Отключение сети с защитной нейтралью происходит только в случае короткого замыкания между занулённым корпусом и фазными проводниками, дифференциальная защита в таких сетях работать не будет, так как дифреле подключается ДО места аварии и появляющийся ток утечки проходит через УЗО и не влияет на его работу. Это может привести к нагреву и возгоранию повреждённой изоляции.

В связи с тем, что нейтральный проводник обеспечивает менее надёжную защиту, чем специально проложенное заземление, область применения зануления ограничена трёхфазными электроприборами в сетях 380/220 В и 660/380 В. В основном это промышленные предприятия и электроустановки.

Если защитное зануление выполнено отдельным проводом или является отводом от совмещённого проводника PEN, выполненным с подключением к контуру заземления, то этот провод в ПУЭ и других нормативных документах может называться заземляющим проводником РЕ.

Информация! В некоторых ситуациях вместо подключения к нейтрали трансформатора используется соединение корпуса с контуром заземления. Такая защита не может называться занулением.

Схема зануления электрооборудования

Существует несколько схем зануления, выбор которых зависит от системы электроснабжения данного жилого дома или микрорайона. Такие объекты питаются от понижающих трансформаторов с глухозаземлённой нейтралью и системы заземления в этих сетях являются одновременно системами зануления.

cхема зануления в квартире

Система TN-C

Самая старая система, в которой электроснабжение осуществляется по четырёхпроводной схеме с заземлением нейтрали только на трансформаторной подстанции.

Зануление в системе TN-C_zanulenie v sisteme TN C

В этой системе защитное зануление подключается к подходящему нулевому проводу напрямую или через четырёхполюсный автомат. При этом нейтральный проводник выполняет сразу две функции — рабочего зануления N и защитную РЕ, поэтому на электросхемах он обозначается PEN.

Важно! Согласно ПУЭ использовать такую защиту в однофазных сетях запрещено.

Система TN-S

Современная система заземления, выполнена по пятипроводной схеме, в которой нейтральный провод N и заземляющий РЕ разделены на всём протяжении от подстанции до потребителя.

В этой схеме нейтраль используется для преобразования трёхфазного напряжения в три однофазных, а так же для выравнивания напряжения между разными фазами. Защита осуществляется только защитным заземлением РЕ.

зануление в системе TN-S_zanulenie v sisteme TN S

Согласно ПУЭ п.1.7.145 этот провод не должен проходить через автоматы, разъединители или другую коммутационную или защитную аппаратуру, в том числе предохранители.

Система TN-C-S

Современная система заземления TN-S, обеспечивающая максимальную защиту, является одновременно самой дорогостоящей и требует полной замены всех линий электропередач и кабельных сетей напряжением 0,4кВ.

Поэтому для повышения электробезопасности без замены подходящих проводов была разработана компромиссная схема электроснабжения TN-C-S. В этой системе к вводному щитку в здание подходит совмещённый проводник PEN, где он повторно заземляется и разделяется на два провода — нейтраль N и заземление РЕ.

зануление в системе TN-C-S_zanulenie v sisteme TN C S

Важно! Разделение проводов производится до автомата или рубильника, после чего их соединение запрещено ПУЭ п. 1.7.131.

Заземление и зануление в чем разница

В электросетях используются два типа защитных проводников — заземление и зануление. В чем разница между ними не всегда могут разобраться даже опытные электромонтёры. Фактически, оба этих провода соединены с нейтралью питающего трансформатора, поэтому они могут считаться занулением.

В этом случае заземлением будет подключение корпуса оборудования к специально изготовленному контуру или естественным заземлителям без присоединения к обмоткам трансформатора.

Однако такое заземление используется только при невозможности обеспечить надёжную защиту по схеме TN-C-S и поэтому при описании электропроводки и систем электроснабжения часть проводников называют заземляющими или защитным занулением, а часть нейтралью или рабочим занулением.

в чем разница между заземлением и занулением

В отличие от рабочей нейтрали заземляющим проводом называют только такой нулевой проводник, который не только соединён с нулевой точкой трансформатора и подключён к контуру заземления, но при этом не используется для подвода электроэнергии. На электросхемах этот провод обозначается РЕ (от английских слов Protective Earth — защитное заземление).

В системах заземления TN-C и TN-C-S провод, соединённый с заземлением на подстанции и является совмещённым нулевым и заземляющим. На электросхемах он обозначается PEN (от английской фразы Protective Earth and Neutra — защитное заземление и нейтраль).

На практике именно этот проводник называют нейтралью. Он может так же обозначаться N — нейтраль, но такое название должно относиться только к рабочей нейтрали в схемах TN-S и к участку после разделения провода PEN в системе заземления TN-C-S.

Можно ли делать зануление в квартире

Зная, что такое зануление, можно дать однозначный ответ на вопрос, можно ли его использовать для защиты в квартире.

Одним из видов «опасного зануления» является неправильное подключение розетки. Согласно которому в самой розетке ставится перемычка от нулевой клеммы на клемму заземления. Это является ГРУБЕЙШЕЙ ОШИБКОЙ. Сделав такое подключение, « специалисты » думают, что обезопасили людей от поражения током заземлив таким образом электротехнику.

На самом деле такая безопасность во много раз увеличивает шансы получить удар током, возможно даже со смертельным исходом.

что такое зануление_chto takoe zanulenie

Еще одна ошибка зануления — неправильное разделение PEN проводника. В чем заключается ошибка? Выполняется такое разделение PEN на PE и N как правило в квартирном или этажном щите.

В этом случае в щите устанавливается дополнительная заземляющая шина PE от нее отходят желто-зеленые жилы для заземления электроприборов. Заземляющая шина подключена перемычкой с нулевой шиной N, на которую подключается PEN проводник с питающей линии.

Если на корпусе электроприбора появится опасное напряжение благодаря перемычке между шинами N и PE возникнет короткое замыкание и автомат отключится. Но если возникнет обрыв нуля все последствия как в примере выше, возникнет опасный потенциал на всех заземленных/зануленных таким образом приборах. При этом ни одна защита не отработает.

Ошибки здесь две:

  1. 1) разделение PEN проводника выполняется после вводного автомата ( должно производиться до ).
  2. 2) отсутствие повторного заземления.

как сделать зануление

Почему нельзя делать зануление в квартире и доме

Согласно нормам ПУЭ это делать запрещено по нескольким причинам:

  1. Нулевой проводник, подходящий к домашней электропроводке, является совмещённым нулевым защитным и нулевым рабочим проводом PEN, или рабочей нейтралью. Применение этого проводника в качестве защитного запрещено ПУЭ п.1.7.132.
  2. В однофазной электропроводке устанавливается вводной двухполюсный автомат, отключающий одновременно фазный и нулевой провода. Согласно ПУЭ п.1.7.145 защитный проводник в однофазных сетях нельзя подключать через коммутационную аппаратуру.

зануление в квартире опасность

почему нельзя делать зануление в квартире

Эти правила включены в ПУЭ в связи с тем, что при обрыве рабочей нейтрали присоединённые к ней корпуса электроприборов окажутся под напряжением через включённые в розетку электроприборы и светильники.

Как правильно заземлить квартирную проводку

Единственный способ заземлить домашние электроприборы — это проложить дополнительный провод к вводу в здание и подключить его ДО коммутационной аппаратуры с одновременным заземлением (повторным) места соединения, превратив систему электроснабжения TN-C в TN-C-S.

Однако чаще всего нейтраль вводного кабеля уже присоединена к естественным заземлителям, таким, как арматура фундамента и другие металлоконструкции, находящиеся в земле.

Вывод

Для защиты от поражения электрическим током все металлические части электроприборов необходимо заземлять. Зная, что такое зануление, становится понятно, что использовать для этой цели допускается только защитное зануление.

Подключение оборудования к рабочей нейтрали может привести к трагическим последствиям и запрещено ПУЭ и другими нормативными документами.

ЗАЗЕМЛЕНИЯ ДЛЯ СТАЦИОНАРНЫХ УСТАНОВОК ПРОВОДНОЙ СВЯЗИ, РАДИОРЕЛЕЙНЫХ СТАНЦИЙ, РАДИОТРАНСЛЯЦИОННЫХ УЗЛОВ И АНТЕНН СИСТЕМ КОЛЛЕКТИВНОГО ПРИЕМА ТЕЛЕВИДЕНИЯ

Настоящий стандарт распространяется на станционные и линейные сооружения установок проводном связи, радиорелейные станции, радиотрансляционные узлы, установки избирательной железнодорожном связи и антенн систем коллективного приема телевидения (СКПТ), для которых оборудуют стационарные заземляющие устройства, и устанавливает нормы сопротивления заземляющих устройств, обеспечивающих нормальную работу сооружении и установок, перечисленных выше, а также безопасность обслуживающего персонала.

Стандарт не распространяется на заземляющие устройства, которые предусматриваются в технике специального назначения.

Термины, применяемые в настоящем стандарте, и их определения приведены в справочном приложении.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. К рабоче-защитному или защитному заземляющему устройству при помощи заземляющих проводов кратчайшим путем должны быть подключены:

один из полюсов электропитающей установки; провод нейтрали обмоток трансформаторов силовой трансформаторной подстанции пли собственном электростанции, питающей оборудование предприятий связи. . радиорелейную станцию или станцию радиотрансляционного узла;

металлические части силового, стативного и коммутаторного оборудования;

металлические трубопроводы водопровода и центрального , отопления и других металлических конструкций внутри здания;

экраны аппаратуры и кабелей;

металлические оболочки кабелей, элементы схем зашиты, Молниеотводы;

антенны СКПТ, подлежащие молниезащите в соответствии с нормативно-технической документацией (далее — НТД).

Число заземляющих проводов и порядок подключения к ним аппаратуры и оборудования устанавливают в НТД на аппаратуру конкретного вида.

1.2. На предприятиях связи следует оборудовать защитное за земляющее устройство, если отсутствуют соединительные линии и цепи дистанционного питания аппаратуры, использующие землю в качестве провода электрической цепи.

1.3. На предприятиях связи следует оборудовать одно рабоче- защитное заземляющее устройство, если заземлен «минус» источника тока (при этом цепи дистанционного питания допускается включать по схеме «провод — земля») или заземлен «плюс» источника тока, но отсутствуют пени дистанционного питания по схеме «провод — земля». При этом соединительные линии могут использовать «землю» в качестве провода электрической цепи. Контур рабоче-защитного заземляющего устройства при наличии цепей дистанционного питания должен иметь два самостоятельных ввода в здание (до щитка заземления).

На предприятиях следует оборудовать обособленные рабочее и защитное заземляющие устройства, если имеются цепи дистанционного питания по схеме «провод — земля» с заземлением «плюса» источника тока.

1.4. Нейтраль обмоток трансформаторов силовой трансформа торной подстанции и собственной электростанции, питающей оборудование предприятий связи, радиорелейную станцию или станцию радиотрансляционного узла, должна быть присоединена к защитному или рабоче-защитному заземляющему устройству. При этом заземляющее устройство для указанного выше предприятия и для трансформаторной подстанции может быть общим, если трансформаторная подстанция расположена на территории этого предприятия.

Сопротивление заземляющего устройства, к которому присоединены нейтрали обмоток генераторов и трансформаторов при удельном сопротивлении грунта до 100 Ом-м, не должно быть более, Ом:

2 — установок напряжением 660/380 В;

4 — установок напряжением 380/220 В;

8 — установок напряжением 220/127 В;

Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей (проложенные под землей металлические трубы, металлические конструкции, арматура здании и другое, за исключением трубопроводов горючих и взрывоопасных смесей, канализации, центрального отопления и бытового водопровода, расположенных вне здания предприятия связи)

При удельном сопротивлении грунта о более 100 Ом-м допускается повысить значение сопротивления заземляющего устройства в раз. но не более чем в десять раз, а также не более значений, указанных в табл. 1—3,5 и в п. 2.1.5.

1.5. Конструкция искусственных заземлителей или различных контуров заземляющего устройства, тип и сечение соединяющих проводников от заземляющего устройства к щитку заземления, перечень аппаратуры, оборудования и элементов защиты, присоединяемых к заземляющему устройству, способы присоединения проводок и их число, методика измерения сопротивления заземляющих устройств и удельного сопротивления грунта устанавливают в НТД на аппаратуру конкретного вида.

1.6. Расстояние между отдельными неизолированными частями, разных заземляющих устройств (между рабочим, защитным, из мерительным и др.) ил участке до ввода и здание не должно быть менее 20 м.

1.7. Сопротивление измерительного заземляющего устройства не должно быть более 100 Ом в грунтах с удельным сопротивле нием до 100 Ом* м и 200 Ом — в грунтах с удельным сопротивлением более 100 Ом * м.

1.8. Сопротивление заземляющих устройств на участке сближе ния линий связи и радиофикации с линиями электропередачи, электрическими железными дорогами и при влиянии радиостанций устанавливают в НТД не должно превышать значении, устанавливаемых настоящим стандартом.

1.9. При эксплуатации заземляющих устройств следует прове рять их сопротивления с периодичностью:

два раза в год — летом (в период наибольшего просыхания грунта) и зимой в период наибольшего промерзания грунта) — на междугородных, городских и сельских телефонных станциях, телеграфных станциях, телеграфных трансляционных, оконечных и абонентских пунктах:

раз в год — летом (в период наибольшего просыхания грунта)— на радиорелейных станциях, на станциях и подстанциях радиотрансляционных узлов;

раз в год — перед началом грозового периода (апрель—май) — в необслуживаемых усилительных пунктах (КУП) и регенерационных пунктах (РП) междугородной, городской и сельской связи; для контейнеров аппаратуры систем передачи (ИКМ-30 и др.);

раз в год — перед началом грозового периода — на кабельных и воздушных линиях связи и радиотрансляционных сетей, у кабельных опор и опор, на которых установлены средства защиты, на абонентских пунктах телефонных и радиотрансляционных сетей у понижающих трансформаторов таксофонных кабин;

не реже раза в год (перед началом грозового периода)—для антенн систем коллективного приема телевидения.

2. НОРМЫ СОПРОТИВЛЕНИЯ

2.1. Нормы сопротивления заземляющих устройств для междугородных телефонных станцийи оконечных пунктов избирательнои железнодорожной связи

2.1.1. Междугородные телефонные станции (МТС), оконечные пункты избирательной железнодорожной связи, линейно-аппаратные цехи (ЛАЦ) и промежуточные усилительные пункты с элек- тропитающнмн установками должны быть оборудованы защитным или рабоче-защитным заземляющим устройством и двумя измерительными заземляющими устройствами. При оборудовании рабочего и защитного заземляющих устройств согласно п. 1.3 устраиивают одно измерительное заземляющее устройство, которое должно быть соединено параллельно защитному заземляющему устройству.

В рабочем состоянии измерительные заземляющие устройства должны быть соединены на щитке заземлений параллельно защитным или рабоче-защитным заземляющим устройствам.

2.1.2. Сопротивление защитных заземляющих устройств МТС, линейно-аппаратных цехов и промежуточных усилительных пунктов, а также оконечных пунктов избирательной железнодорожной связи с электролитающими установками, не использующими зем лю в качестве проводника тока в схемах соединительных линий или дистанционного питания необслуживаемых усилительных и регенерашюнных пунктов по системе «провод — земля», должно быть не более значений, указанных в п. 1.4.

2.1.3. Сопротивление защитных заземляющих устройств проме жуточных пунктов, не имеющих электропитающих установок, должно быть не более 10 Ом ДЛЯ грунтов с удельным сопротивлением до 100 Ом-м и не более 30 Ом — для грунтов с удельным сопротивлением более 100 Ом*м.

2.1.4. Сопротивление рабоче-защитных заземляющих устройств МТС, использующих землю в качестве одного из проводов соеди нительных линий любого типа (заказных, служебных от МТС и АТС, транзитных служебных линий и Др.), или в цепях дистанционного питания (ДП), должно быть не более значений, указанных в табл. 1, а также соответствовать требованиям п. 1.4;

Число цепей в соединительных линиях, включая цепи ДП «провод — земля» До 50 От 51 до 200 Oт 201 до 500 От 501 до 1000 Св. 1000
Сопротивление рабочего или рабоче-защитного заземляющего устройства, Ом, не более 10,0 5,0 2,0 1,0 0,5

2.1.5. Сопротивление рабочих или рабоче-защнтных заземляющих устройств линейно-аппаратных цехов, опорных пунктов; обслуживаемых усилительных пунктов, питающих дистанционно не обслуживаемые или регенерационные пункты по схеме «провод — земля», должно быть определено исходя из падения напряжения на заземляющем устройстве от тока дистанционного питания не более 12 В. Однако сопротивление рабочих или рабоче-защитных заземляющих устройств должно Сыть не более значений, указанных в п. 1.4.

2.2. Нормы сопротивления заземляющих устроиств для необслужииваемых усилительных пунктов междугородной связи и промежуточных пунктов избирательной железнодорожной связи

2.2.1. Необслуживаемые усилительные пункты (ПУП), питаемые дистанционно по схеме » провод — земля «, в которых оканчивается цепь дистанционного питания, должны быть оборудованы тремя обособленными заземляющими устройствами — рабочим, защитным и линейно-защитным.

В качестве защитного заземляющего устройства допускается использовать магниевые протекторы, применяемые для защиты металлических цистерн ПУП от почвенной коррозии.

В случаях, когда не требуется зашита металлических цистерн НУП от почвенной коррозии, а также при использовании неметаллических корпусов. НУП должны быть оборудованы рабочим н объединенным защитным заземляющими устройствами.

2.2.2. Необслуживаемые усилительные пункты (НУП) и регенерационные пункты (РП), питаемые дистанционно по схеме «провод — провод», а также НУП. питаемые по схеме «провод — земля» в которых не оканчивается цепь дистанционного питания, должны быть оборудованы двумя обособленными заземляющими устройствами — защитным и лннейно-защитным.

В качестве заземлителей для защитного заземляющего устройства допускается использовать магниевые протекторы, применяемые для зашиты металлических цистерн НУП или РП от почвенной коррозии.

В случаях, когда не требуется защита металлических цистерн НУП или РП от коррозии, а также при использовании неметаллическнх корпусов НУП или РП, должно быть оборудовано объединенное защитное заземляющее устройство.

2.2.3. Сопротивление рабочего заземляющего устройства для НУП, питаемых по схеме «провод — земля», должно быть не более 10 Ом для грунтов с удельным сопротивлением до 100 Ом⋅м и не более 30 Ом — для грунтов с удельным сопротивлением более 100 Ом⋅м. При этом падение напряжения от токов дистанционного питания на сопротивлении заземляющего устройства должно быть не более 12 В для грунтов с удельным сопротивлением до 100 Ом⋅м и не более 36 В — для грунтов с удельным сопротивлением более 100 Ом⋅м.

2.2.4. Сопротивление защитных заземляющих устройств для НУП или РП, питаемых по схеме «провод — земля» и «провод — провод», должно быть не более 10 Ом для грунтов с удельным сопротивлением до 100 Ом⋅м и не более 30 Ом — для грунтов с удельным сопротивлением более 100 Ом⋅м.

2.2.5. Сопротивление линейно-защитных заземляющих уст ройств для оболочек кабелей, при защите кабелей от ударов мол нии должно быть не более, Ом

10 — для грунтов с удельным сопротивлением до 100 Ом⋅м включ.;

20 — для грунтов с удельным сопротивлением св. 100 до 500 Ом⋅м включ.;

30 — для грунтов с удельным сопротивлением св. 500 до 1000 Ом⋅м включ.;

50 — для грунтов с удельным сопротивлением св. 1000 Ом⋅м.

2.2.6. Промежуточные пункты избирательной железнодорож ной связи должны быть оборудованы одним защитным заземляю щим устройством, сопротивление которого должно быть не более значений, указанных в табл. 2

Удельное сопротивление грунта, Ом⋅м Сопротивление защитного заземления, Ом. не более при числе цепей, введенных в станцию
до 5 включ. св. 5
До 100 включ.
Св. 100 до 300 включ.
Св. 300 до 500 включ.
Св. 500
15
25
35
45
10
20
25
30

2.3. Нормы сопротивлений заземляющих устройств для телеграфных станций и телеграфных трансляционных оконечных и абонентских пунктов

2.3.1. Телеграфные станции, трансляционные, оконечные и абонентские пункты, работающие по двухпроводным цепям, находящиеся в отдельном здании (не совмещенные с MTC, АТС и другими предприятиями) и не использующие «землю» в качестве прохода электрической цепи, должны быть оборудованы защитным и двумя измерительными заземляющими устройствами. В рабочем состоянии все заземляющие устройства должны быть «соединены » параллельно на щитке заземлении. Телеграфные станции, трансляционные оконечные и абонентские пункты, совмещенные с другими предприятиями (MIL, АТС), должны включать заземляющие провода к общему защитному заземляющему устройству.

Для телеграфных станции, где установлено до пяти телеграфных аппаратов, допускается использовать временные измерительные заземляющие устройства.

2.3.2. Сопротивление защитного заземляющего устройства телеграфных станций, имеющих электропитающие установки, не должно быть более значений, указанных в п. 1.4.

Трансляционные, оконечные и абонентские пункты, не имеющие» электропитающие установок, должны Рыть оборудованы защитным заземляющим устройством с сопротивлением не более 10 Ом при удельном сопротивлении грунта до 100 Ом-м и 20 Ом — для грунтов с удельным сопротивлением более 100 Ом⋅м.

2.3.3. Телеграфные станции и телеграфные трансляционные пункты, работающие по однопроводным цепям, должны быть оборудованы рабоче-защитным и двумя измерительными заземляющими устройствами. Для телеграфных станции, где установлено до пяти телеграфных аппаратов, допускается использовать временные измерительные заземляющие устройства.

Сопротивление рабоче-защитного заземляющего устройства з зависимости от числа однопроводных телеграфных цепей. наеденных в станцию (см. ГОСТ 5238—73. черт. 1—6), должно быть не более значении, указанных а табл. 3.

Число телеграфных одно — проводных цепей, введенных в стaнцию До 5 включ. От 6 до 10 включ. От 11 до 20 включ. От 21 до 50 включ. Cв. 50
Сопротивление рябоче-защитного заземляющего устройства. Ом, не более 20,0 10 5 3 2

2.4. Нормы сопротивления заземляющих устройств для городских телефонных станций и станций местной железнодорожной связи

2.4.1. Телефонные станции с центральной батареей (автоматические АТС и ручные — РТС) должны быть оборудованы тремя обособленными заземляющими устройствами — защитным или рабоче-защитным и двумя измерительными.

В рабочем состоянии все три заземляющих устройства должны быть соединены параллельно на щитке заземления и разъединяются лишь для измерения сопротивления защитного или рабоче-защитного заземляющего устройства.

2.4.2. Телефонные станции, имеющие соединительные линии и не использующие землю в качестве проводника тока (например соединительные линии, оборудованные индуктивными комплектами типа РСЛ), следует оборудовать защитными заземляющими устройствами (п. 1.2), сопротивление которых должно быть не более значений, указанных в г.. 1.4.

Телефонные станции, не имеющие питающих трансформаторных подстанций, должны быть оборудованы защитным заземляющим устройством с сопротивлением, не превышающим значений, указанных в табл. 4.

Удельное сопротивление грунта, Ом⋅м Сопротивление защитного заземляющего устройства, Ом. не более при числе соеденительных цепей, введенных в станцию
до 5 включ. св. 5
До 100 включ.
Св. 100 до 300 включ.
Св. 300 до 500 включ.
Св. 500
10
15
20
35
8
10
15
20

2.4.3. Телефонные станции, имеющие соединительные лишни использующие землю в качестве проводников тока (по п. 1.3), должны быть оборудованы рабоче-защнтными заземляющими устройствами, сопротивления которых должны быть не более значении, указанных в табл. 5.

Обшее число соединительных линий До 25 включ. Oт 26 до 50 От 51 до 100 От 101 до 200 От 201 до 500 От 501 до 1000 Св. 1000
Сопротивление paбoче-защитного заземляющего устройства Ом, не более 35,0 12,0 6,0 3,0 2,5 1,0 0,5

Примечание. В случаях, когда на станции соединительные линии оборудованы индуктивными и батарейными (использующими землю в качестве проводника тока) комплектами типа РСЛ, значение сопротивления рабоче-защитного заземления выбирают в зависимости от числа батарейных (полярных) комплектов типа РСЛ.

2.4.4. Необслуживаемые усилительные и регенерационные пункты, питаемые дистанционно по схеме «провод — провод» и «провод — земля», должны быть оборудованы одним защитным заземляющим устройством, значение сопротивления которого должно соответствовать приведенному в п. 2.2.4.

2.5.Нормы сопротивления заземляющих уст ройств сельских телефонных станций (СТО)

2.5.1. Сельские телефонные станции с центральной батареей (РТС и АТС) должны быть оборудованы тремя обособленными заземляющими устройствами согласно пп. 2.4.1—2.4.3.

2.5.2. Телефонные станции емкостью до 200 номеров допуска ется оборудовать одним защитным или рабоче-защитным заземля ющим устройством, а в качестве измерительных заземляющих устройств использовать временные заземляющие устройства.

2.5.3. Для аппаратуры уплотнения сельских АТС и РТС в слу чае (Применения системы питания НУП «провод — провод» следует использовать одно объединенное защитное заземляющее устрой ство. При этом необслуживаемые усилительные пункты должны быть оборудованы защитными заземляющими устройствами с со противлением, не превышающим значении, указанных в пп. 2.1.2 и 2.1.3.

2.5.4. Необслуживаемые усилительные пункты, питаемые ди станционно по схеме «провод — земля», следует оборудовать дву мя обособленными заземляющими устройствами: рабочим н линей но-защитным. Сопротивление рабочих и линейно-защитных зазем ляющих устройств должно быть не более значении, указанных в пп. 2.2.3 и 2.2.5.

2.6. Нормы сопротивления заземления для те лефонных станций с местной батареей (МБ)

2.6.1. Телефонные станции системы МБ, работающие по двухпроводным цепям, должны быть оборудованы тремя обособленными заземляющими устройствами — защитным и двумя измерительными. В рабочем состоянии эти три заземляющих устройства должны быть соединены параллельно на щитке заземления. При емкости станции до 200 номеров допускается не оборудовать стационарные измерительные заземляющие устройства, а при измерении защитного заземляющего устройства использовать временно заземляющие устройства.

2.6.2. Сопротивление защитного заземляющего устройства станций МБ, работающих по двухпроводным цепям, должно быть не более значений, указанных в табл. 2.

2.7.Нормы сопротивления заземляющих устройств для станций и подстанций радиотрансляционных узлов

2.7.1. Станции и подстанции радиотрансляционных узлов следует оборудовать одним защитным или рабоче-защитным заземляющим устройством. Для контрольных измерении сопротивления защитного и рабоче-защитного заземляющего устройства допускается оборудовать два стационарных измерительных заземления или использовать временные заземляющие устройства.

2.7.2. Сопротивление защитного иди рабоче-защитного заземляющего устройства должно быть не более значений, указанных в п. 1.4 для усилительных станций и подстанций, и не более 10 Ом — для трансформаторных подстанций звуковой частоты.

2.8. Нормы сопротивления заземляющих уст ройств для совмещенных установок проводной связи и радиотрансляционных узлов

2.8.1.Стационарные установки проводной связи различного на значения, находящиеся з одном или рядом расположенных зданиях и питающиеся от одной трансформаторной подстанции: меж дугородные, городские, железнодорожной избирательной связи и другие, а также станции и подстанции радиотрансляционных узлов следует оборудовать одним общим защитным или рабоче-защитным заземляющим устройством. При этом следует учитывать сопротивление соединительных электродов от заземляющего устройства.

2.8.2. Значение, сопротивления общего заземляюшего устройст ва должно соответствовать нормам для каждой подключенной установки.

2.8.3. Не допускается в необслуживаемых усилительных пунктах, питаемых дистанционно постоянным током, объединять общее заземляющее устройство с рабочим.

2.9. Нормы сопротивления защитиых за земляющих устройств для линий междугороднои связи

2.9.1. Значения сопротивлений заземляющих устройств для:

искровых разрядников каскадной защиты типов ПР-7, ИР-10, IIP-15 и ИР-20;

искровых разрядников ПР-0,2 или НР-0.3 — при установке их на опорах, смежных с кабельной опорой или станцией;

искровых разрядников, устанавливаемых на проводах воздушных линий для защиты подземных кабелей связи от ударов молями:

молниеотводов, устанавливаемых на опорах воздушных линии;

троса и металлических оболочек кабелей, подвешенных на опорах воздушных линий, должны быть не более значений, указанных в табл. 6.

2.9.2. Сопротивления защитных заземляющих устройств для вводных, кабельных и других опор междугородных линий связи и избирательной железнодорожной связи, на которых в соответствии с требованиями ГОСТ 5238 — 73 требуется включать искровые раз рядники типов ИР-0,2 и ИР-0,3 или газонаполненные разрядники, должны быть не более значений, указанных в табл.7.

Удельное сопротивление грунта, Ом⋅м До 100 включ. Св. 100 до 300 включ. Св. 300 до 500 включ. Св. 500 до 1000 включ. Св. 1000
Сопротивление заземляющего устройства. Ом, не более 20 30 35 45 55
Удельное сопротивление грунта, Ом⋅м До 100 включ. Св. 100 до 300 включ. Св. 300 до 500 включ. Св. 500 до 1000 включ. Св. 1000
Сопротивление заземляющего устройства. Ом, не более 5 7 9 12 18

1.10. Сопротивления защитных заземляющих устройств для разрядников типа ПР-0,3, включаемых для защиты запирающих катушек в третьих цепях (см. ГОСТ 5238 — 73, черт. 15), должны быть не более значении, указанных в табл. 6.

1.11. Сопротивления линейно-защнтных заземляющих устройств для металлических оболочек кабеля, защитных проводов (тросов) или шин, проложенных в грунте при защите кабеля от ударов молнии, должны быть не более значении, указанных в табл. 8.

Удельное сопротивление грунта, Ом⋅м До 100 включ. Св. 100 до 300 включ. Св. 300 до 500 включ. Св. 500 до 1000 включ. Св. 1000
Сопротивление линейно-эащитного заземляющего устройства, Ом, не более 10 20 30 50 60

Примечание. Число линейно-защитных заземляющих устройств, размещение их на кабельных линиях и способ соединения металлических оболочек, тросов и экранов кабелем устанавливают в нормативно-технической документации.

2.10. Нормы сопротивления защитных заземляющих устройств для линий городских и сельских телефонных сетей и сетей местной железнодорожной связи

2.10.1. Сопротивления заземляющих устройств для искровых разрядников типов ИР-0,2; ИР-0,3; ИР-7;ИР-10 и ИР-15, присоединяемые по схемам черт. 27, 30—32 ГОСТ 5238—73, должны быть не более значений, указанных в табл. 6.

2.10.2. Сопротивления заземляющих устройств для угольных разрядников типа УР-500 или газонаполненных разрядников типа Р- 27, устанавливаемых в кабельных ящиках на стыках проводов воздушных линий ГТС, СТС н сетей железнодорожной связи с кабельными линиями (см. ГОСТ 5238—73, черт. 23 — 27), а также для пунктов установки блокираторов (см. ГОСТ 5238 — 73, черт. 31), должны быть не более значений, указанных в табл. 9.

Удельное сопротивление грунта, Ом⋅м До 100 включ. Св. 100 до 300 включ. Св. 100 до 300 включ. Св. 500
Сопротивление заземляющих устройств, Ом, не более 10 15 20 25

2.10.3. Сопротивления заземляющих устройств для абонентских пунктов (см. ГОСТ 5238—73, черт. 22—24; 29), для понижающих трансформаторов таксофонных кабин и молниеотводов, устанавливаемых на опорах воздушных линий, должны быть не более значений, указанных в табл. 10.

Удельное сопротивление грунта, Ом⋅м До 100 включ. Св. 100 до 300 включ. Св. 100 до 300 включ. Св. 500 до 1000 включ. Св. 1000
Сопротивление заземляющих устройств, Ом, не более 30 45 55 65 75

2.10.4. Сопротивление заземляющего устройства для металлической оболочки кабеля, экрана кабеля с неметаллическими оболочками и троса при подвеске их на опорах столбовых и стоечных линий, должно быть не более значений, указанных в табл. 6.

2.10.5. Сопротивление линейно-защитных заземляющих устройств при защите кабелей ГТС и СТС от ударов молнии должны быть не более значений, указанных в табл. 8.

2.11. Нормы сопротивления защитных заземляющих устройств на линиях радиотрансляционных узлов

2.11.1. Сопротивления линейно-защитных заземляющих устройств для искровых разрядников типов ИР-0,5 и ИР-7,0 (см. ГОСТ 14857 — 76 черт. 1, 2), а также для разрядников типов ИР-0,3 и ИР-7,0 (см. ГОСТ 14857—76 черт. 3.5.6) должны быть не более значений, указанных в табл. 6.

2.11.2. Сопротивления линейно-защитных заземляющих уст ройств для заземления металлической оболочки и экрана кабелей, прокладываемых в каналах телефонной канализации и коллекторах (в начале и в конце кабеля), должны быть не более значений, указанных в табл. 8.

2.11.3.Сопротивления линейно-защитных заземляющих устройств для молниеотводов, устанавливаемых на опорах воздушных линий PC, должны быть не более значений, указанных в табл. 10.

2.12. Нормы сопротивления заземляющих устройств для радиорелейных станций

2.12.1. Радиорелейные станции, в том числе имеющие аппара туру уплотнения, должны быть оборудованы одним защитным за земляющим устройством. Для контроля сопротивления защитного заземляющего устройства допускается оборудовать два стационарные измерительные заземляющие устройства или использовать временные заземляющие устройства. В рабочем состоянии защитные и измерительные стационарные заземляющие устройства должны быть соединены параллельно на щитке заземлений.

2.12.2. Сопротивление защитного заземляющего устройства должно быть не более значении, указанных в п. 1.4.

2.13. Нормы сопротивления заземляющих устройств для антенн системы коллективного приема телевидения

2.13.1 Для защиты антенн СКПТ от опасных напряжений и токов, возникающих при грозовых разрядах, должно быть оборудовано защитное заземляющее устройство. Для контроля сопротивления защитного заземляющего устройства допускается использовать временные измерительные заземляющие устройства.

2.13.2. К одному заземляющему устройству допускается присоединять молниеотводы от двух и более антенн СКПТ, расположенных на одном здании.

2.13.3 Конструкция заземляющего устройства, а также молниеотвода, соединяющего антенну СКПТ с заземляющим устройством, и способ их присоединения устанавливают в нормативно- технической документации.

2.13.4 Сопротивление заземляющего устройства для антенн СКПТ должно быть не более значений, указанных в табл. 6.

2.13.5 При наличии заземляющего устройства для здания, на котором расположены антенны СКПТ (при защите зданий от уда ров молнии или для защиты оборудования телефонной связи и радиовещания), допускается присоединять молниеотводы от антенн СКПТ к имеющемуся заземляющему устройству. Сопротивление заземляющего устройства должно быть не более значений, указанных в табл. 6.

ТЕРМИНЫ, ИСПОЛЬЗУЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ И ИХ ОПРЕДЕЛЕНИЯ

Термин Определение
Заземление для установок проводной связи, радиорелейных станций, радиотрансляционных узлов к т. д. Преднамеренное электрическое соединение оборудования или аппаратуры предприятия с заземляющим устройством
Заземлитель Металлический проводник или группа проводников любой формы (труба, уголок, проволока и т. д.). находящихся в непосредственном соприкосновении с землей (грунтом)
Заземляющий проводник Металлический проводник, соединяющий за-земляемое оборудование или аппаратуру с за- землителем
Заземляющее устройство Совокупность заземлителя и заземляющих проводников
Сопротивление заземляющего устройства или сопротивление растеканию токов Суммарное электрическое сопротивление заземляющих проводников и заземлителя относительно земли, выраженное в омах. Сопротивление заземлителя относительно земли определяют как отношение напряжения заземлителя относительно земли к току, проходящему через заземлитель в землю
Удельное сопротивление грунта Электрическое сопротипление оказываемое грунтом объемом 1 м3 при прохождении тока от одной грани грунта к противоположной. Удельное сопротивление грунта, обозначаемое через Q и выраженное в омах на метр, следует измерять с учетом сезонных колебаний, принимая а качестве расчетной наиболее неблагоприятную величину
Рабочее заземляющее устройство Устройство, предназначенное для соединения с землей аппаратуры проводной связи и радиотехнических устройств (радиотрансляционных узлов, радиорелейных станций) с целью использования земли в качестве одного из проводов электрической цепи
Защитное заземляющее устройство Устройство, предназначенное для соединения с землей проводов нейтрали обмоток силовых трансформаторных подстанций, молниеотводов, разрядников, экранов аппаратуры и проводов внутристанционного монтажа. металлических оболочек и бронепокровов кабеля, металлических цистерн, необслуживаемых усилительных пунктов (НУП), металлических частей силового оборудовання установок проводной связи и радиотрансляционных узлов, установок для содержания кабеля под давлением и другого оборудования, которые нормально не находятся под напряжением. но могут оказаться под напряжением при повреждении изоляции токоведущих проводов. Защитные заземляющие устройства обеспечивают выравнивание потенциала металлических частей оборудования с потенциалом земли и тем самым обеспечивают защиту обслуживающего персонала и аппаратуры от возникновения на них опасной разности потенциалов по отношению к земле
Линейно-защитное заземляющее устройство Устройство, обеспечивающее заземление ме-таллических оболочек кабеля и бронепокровов по трассе кабеля и на станциях (НУП), куда под-ходят кабельные линии, а также на воздушных линиях для заземления молниеотводов, тросов и металлических оболочек кабели и т. д. В ряде случаев допускается объединять, защитное и линейно-защитное заземляющие устройства. Та-кое заземляющее устройство называют объеди- ненным защитным.
Измерительное заземляющее устройство Вспомогательное устройство, предназначенное для контрольных измерений сопротивлений ра-бочего, защитного и рабоче-защитного заземляющих устройств. Сопротивление рабочего и защитного заземляющих устройств следует измерять, как правило, со щитка заземления на станции, включая заземляющий проводник в сторону заземлителя. Сопротивление заземляющих устройств на воздушных и кабельных линиях измеряют непосредственно на линии
Рабочее-защитное заземляющее устройство Устройство, служащее одновременно, как рабочим, так и защитным заземляющим устройством. Сопротивление рабоче-защитного заземляющего устройства должно быть не более наименьшего значения, предусмотренного для рабочего и защитного заземляющих устройств.

Зануление в двухпроводной сети когда нет заземления. Мысли вслух

Многим конечно же эта статья не понравится как с технической точки зрения, так и со стороны безопасности. Уже вижу как кто-то полез в ПУЭ или ТКП (у меня в Беларуси оно называется «Технический Кодекс установившейся Практики»), что бы сказать мне, что так делать нельзя. Оно скорее всего так и есть, но написать статью хочется. Да и заработанную карму потратить на этом сайте негде (в смысле применить эти набранные очки с пользой для себя или кого-то ещё).

Всё что будет написано ниже не стоит воспринимать как призыв к действию. Воспринимайте это как рассуждение, разминку для мозга.

Речь пойдёт о двух известных проблемах в жилых домах где нет отдельного заземляющего проводника даже в виде деления PEN на PE и N в ВРУ здания:

  1. Как заземлиться где нет «земли»?
  2. Защита при отгорании магистрального нулевого провода
Без защитного проводника

Единственным вариантом защиты человека от поражения электрическим током при попадании фазы на не заземлённый (и не занулённый) корпус эл.прибора возможен с электромеханическим УЗО. Есть ещё СУП (Система Уравнивания Потенциалов), но если она нормально не заземлена это может нести ещё больший риск.

Здесь всё просто, при протекании тока через условный пол — тело человека — корпус электроприбора УЗО сработает от разности токов втекающих и вытекающих по нулю и фазе. То есть не важно по какому пути пойдёт эта утечка тока: фаза-пол, ноль-пол или фаза и отгоревший ноль — пол — УЗО сработает в любом из этих вариантов. Важно одинаковое направление этих токов.

image

Но помимо безопасности существуют трудности которые порой носят непреодолимый характер:

1. Электроприбор «кусается» из-за его конструктивных особенностей (конденсаторы в блоке питания).
2. Электроприбор изначально не «кусался», но начал «кусаться», при этом он как и прежде работает. Переворачивание вилки в розетке не помогает. Денег, времени и пр. на ремонт нет, хочется только устранить «кусания» или даже «подёргивания» и пользоваться пока окончательно не сломается.
3. Электроприбор не «кусается», однако из-за наличия «гуляющего» напряжения на корпусе не хочет нормально работать (например длинный USB провод от компьютера к принтеру, гудение в динамиках звуковых усилителей, плохой приём радиосигнала и др).

Что бы избавиться от этих проблем, многие жертвуют безопасностью подсоединяя корпуса эл.приборов на прямую к «заземлению» в виде труб отопления, арматуры, или если позволяют условия: закопав металлический штырь в землю. Опасность этих способов «заземления» давно известна. На определённых участках трассы трубы могут быть соединены пластиком, а не металлом, иметь большое сопротивление с заземлением. Токи утечки от электроприборов способствуют быстрой коррозии труб. При попадании фазы на корпус автоматический выключатель или УЗО может не сработать если протекаемые токи будут малы. Появится риск поражения эл.током не только того кто сделал такое заземление, но и всех тех кто волею случая оказался в зоне поражения (сантехник меняющий трубу или соседи этажом ниже и выше).

Зануление от щита

Здесь необходимо сделать отступление.

Хоть в наших электросетях ноль и соединён с контуром заземления на ТП, из-за неравномерной токовой нагрузки по фазам, а так же большой протяжённости кабельных линий, у удалённых потребителей электроэнергии напряжение между нулём и заземлением может составлять больше десятка вольт. Падение напряжения есть и в нулевом проводе!

Стоя на мокром бетонном полу и касаясь руками к корпусу занулённого водонагревателя или металлического крана соединённого металлическими шлангами, вы определённо сможете почувствовать это напряжение. А если соединить нулевой провод с закопанными в землю металлическими трубами или прочими конструкциями, по ним может пойти не слабый такой ток в несколько ампер.

То есть даже теоретически не каждым нулевым проводом можно сделать «зануление» если оно намертво прикручено в ВРУ с разделением там же PEN на PE и N. Такие случаи бывают, например когда у здания нет своего контура заземления. Между настоящей землёй (точка соединения на ТП контура заземления и отходящего нулевого провода) и разделённой «землёй» в ВРУ здания возникнет потенциал.

image

Если ноль не «кусается», то можно пофантазировать на тему как можно им защитится на время пока он цел. А что бы знать что он цел, необходимо привязаться к некой точке у которой хотя бы в теории будет неизменный нулевой электрический потенциал (опорное напряжение) относительно земли. Этой точкой может стать место присоединения нулевого провода к шине заземления на ТП, а сама земля быть как бы идеальным проводником на котором условно нет падения напряжения на участке «земля ТП — земля подключенного здания». Вот к примеру цитата одного комментария на ютубе на эту же тему

… есть такое понятие ( статистический(искусственный 0), если его использовать относительно естественного 0 можно решить это проблему гораздо проще и дешевле). Разница между искусственным 0 и естественным достигает при перекосах и обрывах фаз от 0,5 до 10 в. Проверено опытным путём.

Важным условием для такого «опорного заземления» — это возможность пропустить через себя ток величиной достаточной для срабатывания защиты, при этом возникшее напряжение между «опорным заземлением» и «естественной землёй» не должно превысить опасных значений, к примеру 30 вольт.

Где найти такое опорное заземление в квартире — большой вопрос. Трубы отопления, водопровода и газа откидываем по причинам описанным выше. Вариант подключения к СУП в санузле, но неизвестно как это СУП соединено между собой и другими квартирами, опасно. Получается, единственный вариант — это арматура в стенах и потолке, сваренная между собой и имеющая сопротивление с настоящей землёй менее 1 кОм. Хотя в кирпичном или деревянном здании и этого может не быть.

Но если есть, тогда можно провести испытание её «качества». Взять вольтметр и измерить напряжение между нулём в розетке и арматурой в стенке. Если оно не равно нулю, а к примеру 3 и более вольт, закоротив ноль и арматуру через предохранитель на 100мА, этот предохранитель должен сгореть (при условии, что сопротивление между арматурой и настоящей землёй маленькое). Либо если напряжение между нулём и арматурой близко к нулю, подцепить последовательно в цепь батарейку типа «крона», добавив 9 вольт.

Сгоревший предохранитель — как индикатор пройденного теста «опорного заземления».

Для теоретического эксперимента понадобится четырёхполюсное электромеханическое УЗО или Диф автомат типа AC на ток утечки 30мА, как самое распространённое.

Ориентируясь на то, что схема защиты работает относительно «опорного заземления» рисую первую схему.

image

Схема схожа со схемой подключения УЗО в двухпроводной сети, с той лишь разницей, что «защитный» нулевой проводник взятый с корпуса щитка у нас так же подключен через третий контакт УЗО, но снизу. Ситуации:

А. Ноль в щитке целый. При возникновении токов утечки с корпуса эл.прибора на фазу или ноль, УЗО заметит разницу токов втекающих и вытекающих, защита сработает.

Б. Ноль не приходит на корпус щитка (обрыв). На корпусе напряжение относительно «опорного заземления». Если ток пойдёт по цепочке «защитный ноль — корпус — тело — пол» УЗО отреагирует и на эту утечку.

А если нужно, что бы УЗО не срабатывало на токи утечки с нуля на корпус или с фазы на корпус? Садим защитный ноль на верхние контакты УЗО. Теперь токи суммируются и вычитаются по другому.

А. Ноль в щитке целый. При возникновении токов утечки с корпуса эл.прибора на фазу или ноль УЗО не заметит разницу токов втекающих и вытекающих, УЗО не сработает.

Б. Ноль не приходит на корпус щитка (обрыв). На корпусе напряжение относительно «опорного заземления». Если ток пойдёт по цепочке «защитный ноль — корпус — тело — пол» УЗО отреагирует на эту утечку.

image

Защита при обрыве нуля

Четвёртый контакт УЗО можно использовать как детектор обрыва нуля. Опять же используя наше «опорное заземление». Как только в щитке на защитном нулевом проводе появится напряжение более 30 вольт относительно «опорного заземления» появится ток утечки и защита сработает.

Комментарий из интернета

Кстати, в далеком 2000г. в бутике на Подоле в Киеве (дореволюционный дом, воздушный ввод) мне удалось заставить УЗО реагировать на обрыв ноля. Я поставил между нолем и чистой землей (сам сделал контур) резистор 1кОм, при нормальном напряжении на ноле 5В утечка с ноля 5мА, при обрыве ноля на нем хотя бы 50В, утечка 50мА, УЗО отключалось.

Минус резистора — ток в несколько миллиампер при малых напряжениях между землёй и нулём, то есть может всегда висеть 10-15мА, что не есть хорошо для всего остального что подключено к УЗО которое может сработать например при 17-20мА.

Варистор имеет не совсем хорошую ВАХ, сопротивление при пробитии падает не резко, в добавок если даже и ограничить ток резистором, всё равно у него ограниченное количество срабатываний.

Газовые разрядники от 75вольт, это слишком много. Сопротивление зависит от приложенного напряжения.

Гораздо проще собрать схему на диодах, стабилитроне и транзисторе. Можно и на двух мощных стабилитронах, но их сложнее найти в продаже.

Условие работы схемы:

image

  1. Минимальное напряжение стабилизации стабилитрона Uст.мин должно быть больше чем амплитудное значение напряжения между «опорной землёй» и защитным нулём.
  2. Коэффициент усиления транзистора h21э должен быть не более 20 — 40. Что бы единицы микроампер на базе не превратились в десятки миллиампер на коллекторе. Транзистор обычный биполярный.
  3. Резистор ограничивающий ток схемы подбирается из условия, что при 30V между «опорной землёй» и защитным нулём должен протекать ток 30мА.

Когда напряжение между «опорной землёй» и защитным нулём меньше Uст.мин ток через схему составляет единицы микроампер. При увеличении напряжения до 30 и более вольт, ток через схему резко увеличится до нужных нам 30 и более миллиампер.

Всё вместе будет выглядеть так

image

image

Если без паяния схем, то можно поставить простую защиту от перенапряжения между рабочим нулём и фазой. При отгорании нуля в щитке и появлении более 250 вольт вместо 220, через четвёртый контакт УЗО потечёт ток, защита так же сработает.

image

Вариаций схем на эту тему наверно можно придумать много.

Учитывая что в продаже есть электронные реле напряжения или аналогичные механические расцепители для УЗО и автоматов от производителей электротехнической продукции, такое «кулибинство» возможно свести на нет или до минимума. Главное знать, что такие аппараты защиты существуют и иметь общее представление где и как их применяют.

P.S. Важное замечание с обсуждения на одном форуме

что будет, если ты применишь 4-х полюсное УЗО, которое соединяет через свои контакты батарею с нулём в щите, когда на батарее, но не твоей, а соседской, появится желающий использовать её в виде нуля? Это к тому, что тогда через контакты твоего УЗО потечёт куда больший ток, чем предполагалось изначально

Здесь важен такой момент, что «защитный ноль» на корпусе может быть электрически связан с водопроводными трубами, например при соединении стиральной машины или водонагревателя шлангами к трубам (не обязательно металлическими). По защитному нулю, через корпус эл.прибора по шлангам на батарею пойдёт уравнивающий ток, УЗО сработает, но и токи даже в единицы миллиампер — не есть хорошо. Плюс ситуации, описанные в начале статьи.

Для лучшего понимания как работают устройства защиты по дифференциальному току и их необычного применения, крайне рекомендую к просмотру цикл видео «Устройства дифференциального тока против обрыва, нагрева и дуги» автора ID — Vladimir Melnikov (на хабре Vladimir Melnikov).

Глава 1.7 ЗАЗЕМЛЕНИЕ И ЗАЩИТНЫЕ МЕРЫ ЭЛЕКТРОБЕЗОПАСНОСТИ

1.7.120. Если здание имеет несколько обособленных вводов, главная заземляющая шина должна быть выполнена для каждого вводного устройства. При наличии встроенных трансформаторных подстанций главная заземляющая шина должна устанавливаться возле каждой из них. Эти шины должны соединяться проводником уравнивания потенциалов, сечение которого должно быть не менее половины сечения РЕ (PEN)-проводника той линии среди отходящих от щитов низкого напряжения подстанций, которая имеет наибольшее сечение. Для соединения нескольких главных заземляющих шин могут использоваться сторонние проводящие части, если они соответствуют требованиям 1.7.122 к непрерывности и проводимости электрической цепи.

Защитные проводники (PE-проводники)

1.7.121. В качестве РЕ-проводников в электроустановках напряжением до 1 кВ могут использоваться:

1) специально предусмотренные проводники:

жилы многожильных кабелей;

изолированные или неизолированные провода в общей оболочке с фазными проводами;

стационарно проложенные изолированные или неизолированные проводники;

2) открытые проводящие части электроустановок:

алюминиевые оболочки кабелей

стальные трубы электропроводок;

металлические оболочки и опорные конструкции шинопроводов и комплектных устройств заводского изготовления.

Металлические короба и лотки электропроводок можно использовать в качестве защитных проводников при условии, что конструкцией коробов и лотков предусмотрено такое использование, о чем имеется указание в документации изготовителя, а их расположение исключает возможность механического повреждения;

3) некоторые сторонние проводящие части:

металлические строительные конструкции зданий и сооружений (фермы, колонны и т. п.);

арматура железобетонных строительных конструкций зданий при условии выполнения требований 1.7.122;

металлические конструкции производственного назначения (подкрановые рельсы, галереи, площадки, шахты лифтов, подъемников, элеваторов, обрамления каналов и т.п.).

1.7.122. Использование открытых и сторонних проводящих частей в качестве PE— проводников допускается, если они отвечают требованиям настоящей главы к проводимости и непрерывности электрической цепи.

Сторонние проводящие части могут быть использованы в качестве РЕ-проводников, если они, кроме того, одновременно отвечают следующим требованиям:

1) непрерывность электрической цепи обеспечивается либо их конструкцией, либо соответствующими соединениями, защищенными от механических, химических и других повреждений;

2) их демонтаж невозможен, если не предусмотрены меры по сохранению непрерывности цепи и ее проводимости.

1.7.123. Не допускается использовать в качестве РЕ-проводников:

металлические оболочки изоляционных трубок и трубчатых проводов, несущие тросы при тросовой электропроводке, металлорукава, а также свинцовые оболочки проводов и кабелей;

трубопроводы газоснабжения и другие трубопроводы горючих и взрывоопасных веществ и смесей, трубы канализации и центрального отопления;

водопроводные трубы при наличии в них изолирующих вставок.

.7.124. Нулевые защитные проводники цепей не допускается использовать в качестве нулевых защитных проводников электрооборудования, питающегося по другим цепям, а также использовать открытые проводящие части электрооборудования в качестве нулевых защитных проводников для другого электрооборудования, за исключением оболочек и опорных конструкций шинопроводов и комплектных устройств заводского изготовления, обеспечивающих возможность подключения к ним защитных проводников в нужном месте.

1.7.125. Использование специально предусмотренных защитных проводников для иных целей не допускается.

1.7.126. Наименьшие площади поперечного сечения защитных проводников должны соответствовать табл. 1.7.5.

Площади сечений приведены для случая, когда защитные проводники изготовлены из того же материала, что и фазные проводники. Сечения защитных проводников из других материалов должны быть эквивалентны по проводимости приведенным.

Наименьшие сечения защитных проводников

Сечение фазных проводников, мм 2 Наименьшее сечение защитных проводников, мм 2
S ≤ 16
16 35
S
16
S/2

Допускается, при необходимости, принимать сечение защитного проводника менее требуемых, если оно рассчитано по формуле (только для времени отключения ≤ 5 с):

где S — площадь поперечного сечения защитного проводника, мм 2 ;

I — ток короткого замыкания, обеспечивающий время отключения поврежденной цепи защитным аппаратом в соответствии с табл. 1.7.1 и 1.7.2 или за время не более 5 с в соответствии с 1.7.79, А;

t — время срабатывания защитного аппарата, с;

k — коэффициент, значение которого зависит от материала защитного проводника, его изоляции, начальной и конечной температур. Значение k для защитных проводников в различных условиях приведены в табл. 1.7.6-1.7.9.

Если при расчете получается сечение, отличное от приведенного в табл. 1.7.5, то следует выбирать ближайшее большее значение, а при получении нестандартного сечения — применять проводники ближайшего большего стандартного сечения.

Значения максимальной температуры при определении сечения защитного проводника не должны превышать предельно допустимых температур нагрева проводников при КЗ в соответствии с гл. 1.4, а для электроустановок во взрывоопасных зонах должны соответствовать ГОСТ 22782.0 «Электрооборудование взрывозащищенное. Общие технические требования и методы испытаний».

1.7.127. Во всех случаях сечение медных защитных проводников, не входящих в состав кабеля или проложенных не в общей оболочке (трубе, коробе, на одном лотке) с фазными проводниками, должно быть не менее:

2,5 мм 2 — при наличии механической защиты;

4 мм 2 — при отсутствии механической защиты.

Сечение отдельно проложенных защитных алюминиевых проводников должно быть не менее 16 мм 2 .

1.7.128. В системе ТN для обеспечения требований 1.7.88 нулевые защитные проводники рекомендуется прокладывать совместно или в непосредственной близости с фазными проводниками.

Значение коэффициента k для изолированных защитных проводников, не входящих в кабель, и для неизолированных проводников, касающихся оболочки кабелей (начальная температура проводника принята равной 30 °С)

Параметр Материал изоляции
Поливинилхлорид (ПВХ) Поливинилхлорид (ПВХ) Бутиловая резина
Конечная температура, °С 160 250 220
k проводника:
медного
алюминиевого
стального
143
95
52
176
116
64
166
110
60

Значение коэффициента k для защитного проводника, входящего в многожильный кабель

Параметр Материал изоляции
Поливинилхлорид (ПВХ) Сшитый полиэтилен,
этиленпропиленовая резина
Бутиловая резина
Начальная температура, °С 70 90 85
Конечная температура, °С 160 250 220
k проводника:
медного
алюминиевого
115
76
143
94
134
89

Значение коэффициента k при использовании в качестве защитного проводника алюминиевой оболочки кабеля

Параметр Материал изоляции
Поливинилхлорид (ПВХ) Сшитый полиэтилен,
этиленпропиленовая резина
Бутиловая резина
Начальная температура, °С 60 80 75
Конечная температура, °С 160 250 220
k 81 98 93

Значение коэффициента k для неизолированных проводников, когда указанные температуры не создают опасности повреждения находящихся вблизи материалов (начальная температура проводника принята равной 30 °С)

Материал проводника Условия Проводники
Проложенные открыто и в специально отведенных местах Эксплуатируемые
в нормальной среде в пожароопасной среде
Медь Максимальная температура, °С 500* 200 150
k 228 159 138
Алюминий Максимальная температура, °С 300* 200 150
k 125 105 91
Сталь Максимальная температура, °С 500* 200 150
k 82 58 50

_______________
* Указанные температуры допускаются, если они не ухудшают качество соединений.

1.7.129. В местах, где возможно повреждение изоляции фазных проводников в результате искрения между неизолированным нулевым защитным проводником и металлической оболочкой или конструкцией (например, при прокладке проводов в трубах, коробах, лотках), нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников.

1.7.130. Неизолированные РЕ-проводники должны быть защищены от коррозии. В местах пересечения РЕ-проводников с кабелями, трубопроводами, железнодорожными путями, в местах их ввода в здания и в других местах, где возможны механические повреждения РЕ-проводников, эти проводники должны быть защищены.

В местах пересечения температурных и осадочных швов должна быть предусмотрена компенсация длины РЕ-проводников.

Совмещенные нулевые защитные и нулевые рабочие проводники (PEN-проводники)

1.7.131. В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм 2 по меди или 16 мм 2 по алюминию, функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников могут быть совмещены в одном проводнике (PEN-проводник).

1.7.132. Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник. Это требование не распространяется на ответвления от ВЛ напряжением до 1 кВ к однофазным потребителям электроэнергии.

1.7.133. Не допускается использование сторонних проводящих частей в качестве единственного PEN-проводника.

Это требование не исключает использования открытых и сторонних проводящих частей в качестве дополнительного PEN-проводника при присоединении их к системе уравнивания потенциалов.

1.7.134. Специально предусмотренные PEN-проводники должны соответствовать требованиям 1.7.126 к сечению защитных проводников, а также требованиям гл. 2.1 к нулевому рабочему проводнику.

Изоляция PEN-проводников должна быть равноценна изоляции фазных проводников. Не требуется изолировать шину PEN сборных шин низковольтных комплектных устройств.

1.7.135. Когда нулевой рабочий и нулевой защитный проводники разделены начиная с какой- либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения PEN-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.

Проводники системы уравнивания потенциалов

1.7.136. В качестве проводников системы уравнивания потенциалов могут быть использованы открытые и сторонние проводящие части, указанные в 1.7.121, или специально проложенные проводники, или их сочетание.

1.7.137. Сечение проводников основной системы уравнивания потенциалов должно быть не менее половины наибольшего сечения защитного проводника электроустановки, если сечение проводника уравнивания потенциалов при этом не превышает 25 мм 2 по меди или равноценное ему из других материалов. Применение проводников большего сечения, как правило, не требуется. Сечение проводников основной системы уравнивания потенциалов в любом случае должно быть не менее: медных — 6 мм 2 , алюминиевых — 16 мм 2 , стальных — 50 мм 2 .

1.7.138. Сечение проводников дополнительной системы уравнивания потенциалов должно быть не менее:

при соединении двух открытых проводящих частей — сечения меньшего из защитных проводников, подключенных к этим частям;

при соединении открытой проводящей части и сторонней проводящей части — половины сечения защитного проводника, подключенного к открытой проводящей части.

Сечения проводников дополнительного уравнивания потенциалов, не входящих в состав кабеля, должны соответствовать требованиям 1.7.127.

Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов

1.7.139. Соединения и присоединения заземляющих, защитных проводников и проводников системы уравнивания и выравнивания потенциалов должны быть надежными и обеспечивать непрерывность электрической цепи. Соединения стальных проводников рекомендуется выполнять посредством сварки. Допускается в помещениях и в наружных установках без агрессивных сред соединять заземляющие и нулевые защитные проводники другими способами, обеспечивающими требования ГОСТ 10434 «Соединения контактные электрические. Общие технические требования» ко 2-му классу соединений.

Соединения должны быть защищены от коррозии и механических повреждений.

Для болтовых соединений должны быть предусмотрены меры против ослабления контакта.

1.7.140. Соединения должны быть доступны для осмотра и выполнения испытаний за исключением соединений, заполненных компаундом или герметизированных, а также сварных, паяных и спрессованных присоединений к нагревательным элементам в системах обогрева и их соединений, находящихся в полах, стенах, перекрытиях и в земле.

1.7.141. При применении устройств контроля непрерывности цепи заземления не допускается включать их катушки последовательно (в рассечку) с защитными проводниками.

1.7.142. Присоединения заземляющих и нулевых защитных проводников и проводников уравнивания потенциалов к открытым проводящим частям должны быть выполнены при помощи болтовых соединений или сварки.

Присоединения оборудования, подвергающегося частому демонтажу или установленного на движущихся частях или частях, подверженных сотрясениям и вибрации, должны выполняться при помощи гибких проводников.

Соединения защитных проводников электропроводок и ВЛ следует выполнять теми же методами, что и соединения фазных проводников.

При использовании естественных заземлителей для заземления электроустановок и сторонних проводящих частей в качестве защитных проводников и проводников уравнивания потенциалов контактные соединения следует выполнять методами, предусмотренными ГОСТ 12.1.030 «ССБТ. Электробезопасность. Защитное заземление, зануление».

1.7.143. Места и способы присоединения заземляющих проводников к протяженным естественным заземлителям (например, к трубопроводам) должны быть выбраны такими, чтобы при разъединении заземлителей для ремонтных работ ожидаемые напряжения прикосновения и расчетные значения сопротивления заземляющего устройства не превышали безопасных значений.

Шунтирование водомеров, задвижек и т. п. следует выполнять при помощи проводника соответствующего сечения в зависимости от того, используется ли он в качестве защитного проводника системы уравнивания потенциалов, нулевого защитного проводника или защитного заземляющего проводника.

1.7.144. Присоединение каждой открытой проводящей части электроустановки к нулевому защитному или защитному заземляющему проводнику должно быть выполнено при помощи отдельного ответвления. Последовательное включение в защитный проводник открытых проводящих частей не допускается.

Присоединение проводящих частей к основной системе уравнивания потенциалов должно быть выполнено также при помощи отдельных ответвлений.

Присоединение проводящих частей к дополнительной системе уравнивания потенциалов может быть выполнено при помощи как отдельных ответвлений, так и присоединения к одному общему неразъемному проводнику.

1.7.145. Не допускается включать коммутационные аппараты в цепи РЕ— и PEN-проводников, за исключением случаев питания электроприемников при помощи штепсельных соединителей.

Допускается также одновременное отключение всех проводников на вводе в электроустановки индивидуальных жилых, дачных и садовых домов и аналогичных им объектов, питающихся по однофазным ответвлениям от ВЛ. При этом разделение PEN-проводника на РЕ— и N-проводники должно быть выполнено до вводного защитно-коммутационного аппарата.

1.7.146. Если защитные проводники и/или проводники уравнивания потенциалов могут быть разъединены при помощи того же штепсельного соединителя, что и соответствующие фазные проводники, розетка и вилка штепсельного соединителя должны иметь специальные защитные контакты для присоединения к ним защитных проводников или проводников уравнивания потенциалов.

Если корпус штепсельной розетки выполнен из металла, он должен быть присоединен к защитному контакту этой розетки.

Переносные электроприемники

1.7.147. К переносным электроприемникам в Правилах отнесены электроприемники, которые могут находиться в руках человека в процессе их эксплуатации (ручной электроинструмент, переносные бытовые электроприборы, переносная радиоэлектронная аппаратура и т. п.).

1.7.148. Питание переносных электроприемников переменного тока следует выполнять от сети напряжением не выше 380/220 В.

В зависимости от категории помещения по уровню опасности поражения людей электрическим током (см. гл. 1.1) для защиты при косвенном прикосновении в цепях, питающих переносные электроприемники, могут быть применены автоматическое отключение питания, защитное электрическое разделение цепей, сверхнизкое напряжение, двойная изоляция.

1.7.149. При применении автоматического отключения питания металлические корпуса переносных электроприемников, за исключением электроприемников с двойной изоляцией, должны быть присоединены к нулевому защитному проводнику в системе TN или заземлены в системе IT, для чего должен быть предусмотрен специальный защитный (РЕ) проводник, расположенный в одной оболочке с фазными проводниками (третья жила кабеля или провода — для электроприемников однофазного и постоянного тока, четвертая или пятая жила — для электроприемников трехфазного тока), присоединяемый к корпусу электроприемника и к защитному контакту вилки штепсельного соединителя. РЕ-проводник должен быть медным, гибким, его сечение должно быть равно сечению фазных проводников. Использование для этой цели нулевого рабочего (N) проводника, в том числе расположенного в общей оболочке с фазными проводниками, не допускается.

1.7.150. Допускается применять стационарные и отдельные переносные защитные проводники и проводники уравнивания потенциалов для переносных электроприемников испытательных лабораторий и экспериментальных установок, перемещение которых в период их работы не предусматривается. При этом стационарные проводники должны удовлетворять требованиям 1.7.121-1.7.130, а переносные проводники должны быть медными, гибкими и иметь сечение не меньше чем у фазных проводников. При прокладке таких проводников не в составе общего с фазными проводниками кабеля их сечения должны быть не менее указанных в 1.7.127.

1.7.151. Для дополнительной защиты от прямого прикосновения и при косвенном прикосновении штепсельные розетки с номинальным током не более 20 А наружной установки, а также внутренней установки, но к которым могут быть подключены переносные электроприемники, используемые вне зданий либо в помещениях с повышенной опасностью и особо опасных, должны быть защищены устройствами защитного отключения с номинальным отключающим дифференциальным током не более 30 мА. Допускается применение ручного электроинструмента, оборудованного УЗО-вилками.

При применении защитного электрического разделения цепей в стесненных помещениях с проводящим полом, стенами и потолком, а также при наличии требований в соответствующих главах ПУЭ в других помещениях с особой опасностью, каждая розетка должна питаться от индивидуального разделительного трансформатора или от его отдельной обмотки.

При применении сверхнизкого напряжения питание переносных электроприемников напряжением до 50 В должно осуществляться от безопасного разделительного трансформатора.

1.7.152. Для присоединения переносных электроприемников к питающей сети следует применять штепсельные соединители, соответствующие требованиям 1.7.146.

В штепсельных соединителях переносных электроприемников, удлинительных проводов и кабелей проводник со стороны источника питания должен быть присоединен к розетке, а со стороны электроприемника — к вилке.

.7.153. УЗО защиты розеточных цепей рекомендуется размещать в распределительных (групповых, квартирных) щитках. Допускается применять УЗО-розетки.

1.7.154. Защитные проводники переносных проводов и кабелей должны быть обозначены желто-зелеными полосами.

Передвижные электроустановки

1.7.155. Требования к передвижным электроустановкам не распространяются на: судовые электроустановки;

электрооборудование, размещенное на движущихся частях станков, машин и механизмов;

Для испытательных лабораторий должны также выполняться требования других соответствующих нормативных документов.

1.7.156. Автономный передвижной источник питания электроэнергией — такой источник, который позволяет осуществлять питание потребителей независимо от стационарных источников электроэнергии (энергосистемы).

1.7.157. Передвижные электроустановки могут получать питание от стационарных или автономных передвижных источников электроэнергии.

Питание от стационарной электрической сети должно, как правило, выполняться от источника с глухозаземленной нейтралью с применением систем TN-S или TN-C-S. Объединение функций нулевого защитного проводника РЕ и нулевого рабочего проводника N в одном общем проводнике PEN внутри передвижной электроустановки не допускается. Разделение PEN— проводника питающей линии на РЕ— и N-проводники должно быть выполнено в точке подключения установки к источнику питания.

При питании от автономного передвижного источника его нейтраль, как правило, должна быть изолирована.

1.7.158. При питании стационарных электроприемников от автономных передвижных источников питания режим нейтрали источника питания и меры защиты должны соответствовать режиму нейтрали и мерам защиты, принятым для стационарных электроприемников.

1.7.159. В случае питания передвижной электроустановки от стационарного источника питания для защиты при косвенном прикосновении должно быть выполнено автоматическое отключение питания в соответствии с 1.7.79 с применением устройства защиты от сверхтоков. При этом время отключения, приведенное в табл. 1.7.1, должно быть уменьшено вдвое либо дополнительно к устройству защиты от сверхтоков должно быть применено устройство защитного отключения, реагирующее на дифференциальный ток.

В специальных электроустановках допускается применение УЗО, реагирующих на потенциал корпуса относительно земли.

При применении УЗО, реагирующего на потенциал корпуса относительно земли, уставка по значению отключающего напряжения должна быть равной 25 В при времени отключения не более 5 с.

1.7.160. В точке подключения передвижной электроустановки к источнику питания должно быть установлено устройство защиты от сверхтоков и УЗО, реагирующее на дифференциальный ток, номинальный отключающий дифференциальный ток которого должен быть на 1-2 ступени больше соответствующего тока УЗО, установленного на вводе в передвижную электроустановку

При необходимости на вводе в передвижную электроустановку может быть применено защитное электрическое разделение цепей в соответствии с 1.7.85. При этом разделительный трансформатор, а также вводное защитное устройство должны быть помещены в изолирующую оболочку.

Устройство присоединения ввода питания в передвижную электроустановку должно иметь двойную изоляцию.

1.7.161. При применении автоматического отключения питания в системе IT для защиты при косвенном прикосновении должны быть выполнены:

защитное заземление в сочетании с непрерывным контролем изоляции, действующим на сигнал;

автоматическое отключение питания, обеспечивающее время отключения при двухфазном замыкании на открытые проводящие части в соответствии с табл. 1.7.10.

Наибольшее допустимое время защитного автоматического отключения для системы IT в передвижных электроустановках, питающихся от автономного передвижного источника

Номинальное линейное напряжение, U, В Время отключения, с
220
380
660
Более 660
0,4
0,2
0,06
0,02

Для обеспечения автоматического отключения питания должно быть применено: устройство защиты от сверхтоков в сочетании с УЗО, реагирующим на дифференциальный ток, или устройством непрерывного контроля изоляции, действующим на отключение, или, в соответствии с 1.7.159, УЗО, реагирующим на потенциал корпуса относительно земли.

1.7.162. На вводе в передвижную электроустановку должна быть предусмотрена главная шина уравнивания потенциалов, соответствующая требованиям 1.7.119 к главной заземляющей шине, к которой должны быть присоединены:

нулевой защитный проводник РЕ или защитный проводник РЕ питающей линии;

защитный проводник передвижной электроустановки с присоединенными к нему защитными проводниками открытых проводящих частей;

проводники уравнивания потенциалов корпуса и других сторонних проводящих частей передвижной электроустановки;

заземляющий проводник, присоединенный к местному заземлителю передвижной электроустановки (при его наличии).

При необходимости открытые и сторонние проводящие части должны быть соединены между собой посредством проводников дополнительного уравнивания потенциалов.

1.7.163. Защитное заземление передвижной электроустановки в системе IT должно быть выполнено с соблюдением требований либо к его сопротивлению, либо к напряжению прикосновения при однофазном замыкании на открытые проводящие части.

При выполнении заземляющего устройства с соблюдением требований к его сопротивлению значение его сопротивления не должно превышать 25 Ом. Допускается повышение указанного сопротивления в соответствии с 1.7.108.

При выполнении заземляющего устройства с соблюдением требований к напряжению прикосновения сопротивление заземляющего устройства не нормируется. В этом случае должно быть выполнено условие:

где Rз — сопротивление заземляющего устройства передвижной электроустановки, Ом;

Iз — полный ток однофазного замыкания на открытые проводящие части передвижной электроустановки, А.

1.7.164. Допускается не выполнять местный заземлитель для защитного заземления передвижной электроустановки, питающейся от автономного передвижного источника питания с изолированной нейтралью, в следующих случаях:

1) автономный источник питания и электроприемники расположены непосредственно на передвижной электроустановке, их корпуса соединены между собой при помощи защитного проводника, а от источника не питаются другие электроустановки;

2) автономный передвижной источник питания имеет свое заземляющее устройство для защитного заземления, все открытые проводящие части передвижной электроустановки, ее корпус и другие сторонние проводящие части надежно соединены с корпусом автономного передвижного источника при помощи защитного проводника, а при двухфазном замыкании на разные корпуса электрооборудования в передвижной электроустановке обеспечивается время автоматического отключения питания в соответствии с табл. 1.7.10.

1.7.165. Автономные передвижные источники питания с изолированной нейтралью должны иметь устройство непрерывного контроля сопротивления изоляции относительно корпуса (земли) со световым и звуковым сигналами. Должна быть обеспечена возможность проверки исправности устройства контроля изоляции и его отключения.

Допускается не устанавливать устройство непрерывного контроля изоляции с действием на сигнал на передвижной электроустановке, питающейся от такого автономного передвижного источника, если при этом выполняется условие 1.7.164, пп. 2.

1.7.166. Защита от прямого прикосновения в передвижных электроустановках должна быть обеспечена применением изоляции токоведущих частей, ограждений и оболочек со степенью защиты не менее IP 2X. Применение барьеров и размещение вне пределов досягаемости не допускается.

В цепях, питающих штепсельные розетки для подключения электрооборудования, используемого вне помещения передвижной установки, должна быть выполнена дополнительная защита в соответствии с 1.7.151.

1.7.167. Защитные и заземляющие проводники и проводники уравнивания потенциалов должны быть медными, гибкими, как правило, находиться в общей оболочке с фазными проводниками. Сечение проводников должно соответствовать требованиям:

уравнивания потенциалов — 1.7.136-1.7.138.

При применении системы IT допускается прокладка защитных и заземляющих проводников и проводников уравнивания потенциалов отдельно от фазных проводников.

1.7.168. Допускается одновременное отключение всех проводников линии, питающей передвижную электроустановку, включая защитный проводник при помощи одного коммутационного аппарата (разъема).

1.7.169. Если передвижная электроустановка питается с использованием штепсельных соединителей, вилка штепсельного соединителя должна быть подключена со стороны передвижной электроустановки и иметь оболочку из изолирующего материала.

Электроустановки помещений для содержания животных

1.7.170. Питание электроустановок животноводческих помещений следует, как правило, выполнять от сети напряжением 380/220 В переменного тока.

1.7.171. Для защиты людей и животных при косвенном прикосновении должно быть выполнено автоматическое отключение питания с применением системы TN-C-S. Разделение PEN-проводника на нулевой защитный (РЕ) и нулевой рабочий (N) проводники следует выполнять на вводном щитке. При питании таких электроустановок от встроенных и пристроенных подстанций должна быть применена система TN-S, при этом нулевой рабочий проводник должен иметь изоляцию, равноценную изоляции фазных проводников на всем его протяжении.

Время защитного автоматического отключения питания в помещениях для содержания животных, а также в помещениях, связанных с ними при помощи сторонних проводящих частей, должно соответствовать табл. 1.7.11.

Наибольшее допустимое время защитного автоматического отключения для системы TN в помещениях для содержания животных

Номинальное фазное напряжение, U0, В Время отключения, с
127
220
380
0,35
0,2
0,05

Если указанное время отключения не может быть гарантировано, необходимы дополнительные защитные меры, например дополнительное уравнивание потенциалов

1.7.172. PEN-проводник на вводе в помещение должен быть повторно заземлен. Значение сопротивления повторного заземления должно соответствовать 1.7.103.

1.7.173. В помещениях для содержания животных необходимо предусматривать защиту не только людей, но и животных, для чего должна быть выполнена дополнительная система уравнивания потенциалов, соединяющая все открытые и сторонние проводящие части, доступные одновременному прикосновению (трубы водопровода, вакуумпровода, металлические ограждения стойл, металлические привязи и др.).

1.7.174. В зоне размещения животных в полу должно быть выполнено выравнивание потенциалов при помощи металлической сетки или другого устройства, которое должно быть соединено с дополнительной системой уравнивания потенциалов.

1.7.175. Устройство выравнивания и уравнивания электрических потенциалов должно обеспечивать в нормальном режиме работы электрооборудования напряжение прикосновения не более 0,2 В, а в аварийном режиме при времени отключения более указанного в табл. 1.7.11 для электроустановок в помещениях с повышенной опасностью, особо опасных и в наружных установках — не более 12 В.

1.7.176. Для всех групповых цепей, питающих штепсельные розетки, должна быть дополнительная защита от прямого прикосновения при помощи УЗО с номинальным отключающим дифференциальным током не более 30 мА.

1.7.177. В животноводческих помещениях, в которых отсутствуют условия, требующие выполнения выравнивания потенциалов, должна быть выполнена защита при помощи УЗО с номинальным отключающим дифференциальным током не менее 100 мА, устанавливаемых на вводном щитке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *