Что такое интерфейс передачи данных
Перейти к содержимому

Что такое интерфейс передачи данных

  • автор:

Интерфейсы передачи данных

Электронные системы стали достаточно сложными и состоят из множества самостоятельных электронных устройств, которые взаимодействуют между собой посредством разнообразных интерфейсов передачи данных. У каждого интерфейса есть свои особенности, плюсы и минусы. В данном разделе мы постараемся описать наиболее сложные интерфейсы, используемые нами во время разработки электроники.

CAN – шина, CAN – интерфейс

В данной статье не будем полностью расписывать CAN протокол, а обратим внимание лишь на вещи, которые надо обязательно знать и понимать для использования или разработки электронных устройств с поддержкой CAN.

CAN FD — новый интерфейс передачи данных от Bosch

В последние годы уровень промышленности электронных устройств растет стремительными темпами. В современных автомобилях в больших количествах используются всевозможные датчики, электронные блоки управления, исполнительные механизмы, онлайн-программируемые устройства и .

Протокол SAE J2716 SENT

Все уже давно наслышаны о модулях увеличения мощности двигателя автомобиля с помощью корректировки показаний датчиков. Делают их все кому не лень, но теперь появились новые датчики с SENT протоколом на новых премиальных автомобилях, что для многих производителей стало достаточно большой проблемой. Разрабатывая такую систему, нам протокол показался очень интересным и решили написать краткое описание.

Развитие интерфейсов передачи данных

Развитие интерфейсов передачи данных

История развития интерфейсов систем хранения данных

Интерфейсы передачи данных развиваются так быстро, что производителям систем хранения данных сложно за ними успевать. Каждый год появляются интерфейсы, позволяющие достичь скорости передачи данных во много раз большей, чем уже существующие устройства. Коммутаторы и сетевые адаптеры начинают поддерживать новейшие скоростные интерфейсы задолго до того, как они становятся доступными в системах хранения данных.

В таблице ниже показано развитие пропускных способностей интерфейсов подключения СХД на временной шкале.

Тенденции развития интерфейсов

Ниже описаны предполагаемые годы появления новых скоростей передачи данных для различных интерфейсов, основанные на исследованиях отрасли. История показывает, что для многих интерфейсов цикл разработки новых стандартов составляет 3-4 года.

Стоит отметить, что с момента утверждении спецификации нового интерфейса и до появления на рынке поддерживающих его продуктов проходит обычно несколько месяцев. Широкое распространение нового стандарта может затянуться на несколько лет.

Также сейчас ведется работа по разработке версий уже существующих интерфейсов с пониженным энергопотреблением.

Fibre Channel

32Gbps FC (32GFC)

Работа над стандартом 32GFC, FC-PI-6, началась в начале 2010 года. В декабре 2013 ассоциация Fibre Channel Industry Association (FCIA) сообщила о завершении работы над спецификацией. Ожидается, что продукты, поддерживающие этот интерфейс, появятся на рынке в 2015 или 2016 годах. 32GFC будет использовать 25/28G SFP+ коннектор.

Мультиканальный интерфейс FC 128Gb, известный как 128FCp (параллельный четырехканальный), основывается на технологии FC 32Gb и добавлен в официальный план развития стандарта FC. Комитет T11 присвоил проекту название FC-PI-6P. Завершение спецификации планируется на конец 2014 – начало 2015 года, продукты станут доступны в 2015 или 2016 году. 128GFCp, вероятно, будет использовать коннекторы QSFP+, возможна также поддержка CFP2 или CFP4 коннекторов.

Некоторые производители представляют 32GFC и 128GFC как «Gen 6» Fibre Channel, так как эта версия поддерживает 2 различные скорости передачи данных в двух различных конфигурациях (последовательной и параллельной).

64Gbps FC (64GFC), 256Gbps FC (256GFC)

Разработка стандартов 64GFC и 256GFC началась в проекте FC-PI-7. Техническая стабильность ожидается в 2017 году. Каждая ревизия FC обратно совместима как минимум с двумя предыдущими поколениями.

FC как интерфейс SAN

По-видимому, Fibre Channel в обозримом будущем будет оставаться основной технологией для построения сетей SAN. За прошедшие годы в инфраструктуру FC были инвестированы значительные средства (миллиарды долларов США), в основном, в центры обработки данных, которые будут функционировать в течение еще многих лет.

FC как дисковый интерфейс

Fibre Channel как интерфейс для подключения дисков уходит в прошлое, так как производители дисков корпоративного класса переходят на 6Gbps SAS и 12Gbps SAS. Из-за довольно большого объема выпущенных 3.5-дюймовых дисков с интерфейсом FC, использующихся в корпоративных дисковых подсистемах, ожидается, что FC будет использоваться еще некоторое время для их поддержки. Среди 2.5-дюймовых дисков интерфейс Fibre Channel, скорее всего, будет доступен на очень небольшом числе устройств.

Fibre Channel over Ethernet

FCoE (FC-BB-6)

Работа над стандартом FC-BB-6 была завершена комитетом T11 в августе 2014 года. FC-BB-6 стандартизирует архитектуру VN2VB и улучшает масштабируемость Domain_ID.

VN2VN — это способ соединить напрямую конечные узлы FCoE (Virtual N_Ports) без необходимости в FC или FCoE коммутаторах (FC Forwarders), что позволяет упростить конфигурацию в небольших размещениях. Эту идею иногда называют «Ethernet Only» FCoE. В таких сетях не требуется зонирование, что дает меньшую сложность и уменьшает расходы.

Масштабируемость Domain_ID (Domain_ID Scalability) позволяет FCoE фабрикам масштабироваться до более крупных SAN.

40Gbps и 100Gbps

До появления 40Gbps FCoE остался год или два. Возможно, интерфейс появится одновременно с 32Gb FC. Стандарты IEEE 802.3ba 40Gbps и 100Gbps Ethernet были ратифицированы в июне 2010. Новые продукты должны появиться через некоторое время.

Скорее всего, 40Gbps и 100Gbps FCoE, основанные на стандартах Ethernet 2010 года, будут использоваться первоначально для ISL-ядер, тем самым оставляя 10Gb FCoE в основном для конечных соединений. Ожидается, что будущие версии 100GFCoE кабелей и коннекторов будут доступны в конфигурациях 10х10 и затем 4х25.

InfiniBand

В настоящее время продукты, использующие 100Gbps Infiniband EDR (Enchanced Data Rate) уже доступны в продаже. EDR использует коннекторы 25/28G SFP+, так же как интерфейсы Ethernet и Fibre Channel.

InfiniBand High Data Rate (HDR), поддерживающий скорость в 2 раза больше, чем EDR, ожидается в 2017 или 2018 году. Хост-адаптеры HDR, возможно, будут требовать наличие PCIe 4.0 слотов.

Ethernet

В июле 2014 года 2 различные отраслевые группы — 20G/50G Ethernet Consortium и IEEE 802.3 25Gb/s Ethernet Study Group — объявили о начале новой работы над спецификацией Ethernet для использования преимуществ 25Gb PHY в однополосной конфигурации. В результате была получена спецификация однополосного соединения, похожего на существующую 10GbE технологию, но в 2.5 раза быстрее. Продукты, использующие эти технологии уже доступны. Также планируется разработка стандарта 50GbE, использующего 2 полосы 25GbE. Окончание спецификации планируется в 2018-2020 году.

В разработке находятся стандарты 2.5GbE и 5GbE, которые позволяют увеличивать пропускную способность сети без дополнительных затрат благодаря использованию кабелей категории 5e. Организация NBASE-T Alliance выпустила версию 1.1 спецификацию NBASE-T, которая описывает реализацию на физическом уровне. Technical Working Group работает над спецификацией для системного интерфейса PHY-MAC, магнитными и канальными характеристиками. Кроме того, работники 25 компаний участвуют в разработке стандартов IEEE 802.3bz 2.5/5GBASE-T. Продукты, поддерживающие 2.5GbE и 5GbE уже появляются на рынке.

SAS

12Gbps SAS

Спецификация SAS 3, включающая в себя 12Gbps SAS, была отправлена в INCITS в 4 квартале 2013 года. Продукты на 12Gbps SAS для конечных пользователей начали появляться во второй половине 2013, включая SSD, сетевые адаптеры (SAS HBA) и RAID-контроллеры. 12Gbps SAS позволяет использовать все преимущества шины PCIe 3.0.

24Gbps SAS

Спецификация интерфейса 24Gbps SAS сейчас в разработке. По прогнозам, первые компоненты, использующие 24Gbps SAS могут появиться в 2016 или 2017 году, первые продукты для пользователей будут доступны в 2018. 24Gbps SAS разрабатывается из расчета полной совместимости с 12Gbps и 6Gbps SAS. Возможно, будет использована другая схема кодирования.

Прототипы интерфейса 24Gbps SAS будут использовать технологию PCIe 3.x, однако, вероятно, что финальные продукты будут задействовать технологию PCIe 4.x.

SCSI Express

SCSI Express реализует хорошо известный протокол SCSI через интерфейс PCI Express, уменьшая задержку за счет использования PCIe. Он разрабатывается для соответствия улучшенной скорости SSD дисков. SCSI Express использует протоколы SCSI over PCIe (SOP) и PCIe Queueing Interface (PQI), создавая SOP-PQI протокол. Контроллеры соединяются с устройствами с помощью коннектора SFF-8639, который поддерживает множество протоколов и интерфейсов, таких как PCIe, SAS и SATA. SCSI Express поддерживает PCIe устройства, использующие до 4х полос.

SCSI Express впервые был предложен в 2011 году и принят в работу в качестве формального проекта в 2012, но не развивался до 2015 года. Пока не известно, когда первые продукты SCSI Express будут выпущены на рынок.

Возможности подключения SAS

Новые возможности подключения SAS позволяют передавать данные на большие расстояния, благодаря использованию активных медных патч-кордов и оптоволоконных кабелей. Коннектор Mini SAS HD (SFF-8644) может быть использован для 6Gbps SAS и 12Gbps SAS.

В будущем ожидаются такие возможности, как поддержка набора команд Zoned Block Commands (ZBC) и технологии записи для дисков увеличенного объема Shingled Magnetic Recording (SMR).

SATA Express

Спецификация SATA Express включается в SATA версии 3.2. SATA Express позволяет сосуществовать клиентским SATA и PCIe решениям. SATA Express позволяет увеличить скорость передачи до 2 полос PCIe (2GBps для PCIe 3.0 и 1GBps для PCIe 2.0) по сравнению с текущей технологией SATA (0.6GBps). Такая скорость подходит для SSD и SSHD, в то время как обыкновенные HDD-диски могут продолжать использовать существующий SATA интерфейс. Каждое устройство может использовать PCIe или SATA коннектор, но не оба одновременно. Отдельный сигнал, порождаемый устройством, говорит хосту, является устройство SATA или PCI Express. На середину 2015 года SATA Express поддерживается очень небольшим количеством материнских карт. Пока не понятно, будет ли SATA Express принят рынком, в ближайшее время не стоит ожидать появления большого числа продуктов.

Новые возможности SATA

Среди новых возможностей, которые запланированы на будущее, можно отметить такие опции корпоративного уровня, как удаленное отключение питания, улучшенное восстановление массива и оптимизации для устройств, работающих на NAND флеш-памяти. Также планируется поддержка технологии SMR (Shingled Magnetic Recording).

Thunderbolt

Thunderbolt 2 был представлен в конце 2013 года, сейчас выпускается множество устройств, использующих данный интерфейс. Скорость передачи данных Thunderbolt 2 составляет 20 Gbps.

Thunderbolt 3 (40 Gbps) был анонсирован в июне 2015 года. Используется кабель USB type-C, который поддерживает USB 3.1 (10 Gbps), Display Port (двойные 4k дисплеи), 4 полосы PCI Express 3.0 и предыдущие версии Thunderbolt. В дополнение, предоставляется 15 ватт для питания подключенных устройств и поддерживается питание USB для зарядки портативных компьютеров до 100 ватт. Активные медные и оптоволоконные кабели поддерживают скорость передачи данных до 40 Gbps. Менее дорогие пассивные медные кабели поддерживают скорость до 20 Gbps. Ожидается появление первых продуктов, использующих Thunderbolt 3, в конце 2015 года. Намного больше устройств станут доступны в 2016 году.

USB

USB 3.1

В июле 2013 года USB 3.0 Promoter Group объявила о создании спецификации USB 3.1. Новый интерфейс позволяет работать со скоростью 10 Gbps и полностью совместим с предыдущими версиями USB. USB 3.1 использует схему кодирования 128b/132b, в которой 4 бита используются для управления протоколом и передачи информации о кабеле. Устройства, использующие USB 3.1 с новым кабелем Type-C уже появились на рынке.

Питание USB

USB является интерфейсом с возможностью питания подключенных устройств и появляется все больше устройств, заряжающихся или работающих от USB. Спецификация USB Power Delivery (PD) версии 1.0 появилась в июле 2012 года. В ней было предложено увеличить мощность питания с 7.5 ватт до 100 ватт в зависимости от типа кабеля и коннектора. Устройства должны договариваться друг с другом для определения напряжения и силы тока для передачи электроэнергии, причем возможно передавать энергию в любом направлении. Устройства могут корректировать мощность питания во время передачи информации. Прототипы устройств с USB PD начали появляться в конце 2013 года. Спецификация USB PD включена в спецификацию USB 3.1.

Кабель USB Type-C

Спецификация нового кабеля и коннектора была завершена в августе 2014 года. Этот кабель имеет существенно отличающийся дизайн с уменьшенным размером коннектора, который легко может применяться в различных устройствах. В соответствии с новой спецификацией кабель и коннектор могут быть использованы в любом положении, независимо от ориентации коннектора и направления кабеля. Кабель имеет один и тот же тип коннектора с обеих сторон. Первые Type-C USB кабели представляют собой пассивные медные кабели длиной до 1 м, скоро ожидается появление активных медных и оптоволоконных кабелей.

Основы интерфейсов последовательной передачи данных

Растущий объем внедрения самых различных систем автоматизации во всех областях промышленности требует обработки постоянно возрастающего объема информации. «Основными артериями» являются кабели последовательной передачи данных, по которым .

Растущий объем внедрения самых различных систем автоматизации во всех областях промышленности требует обработки постоянно возрастающего объема информации. «Основными артериями» являются кабели последовательной передачи данных, по которым управляют комплексными процессами и передают результаты измерений параметров технологического процесса. Широко применяются различные типы последовательных интерфейсов, которые гарантируют помехозащищенную высокоскоростную передачу данных в тяжелых промышленных условиях.

RS-232 (V.24)

  • от -3 до -15 для логического значения «1»
  • от +3 до +15 для логического значения «0»

На линиях передачи управляющих и оповестительных сигналов логика работы, напротив, инвертирована (лог. «I» = положительный потенциал). Максимальная скорость передачи данных составляет 115,2 кбит/с. В промышленных условиях дистанцию передачи в таком случае рекомендуется уменьшить до 5 м.

TTY

Интерфейс TTY с токовой петлей впервые был применен в телеграфии. В настоящее время его все еще можно встретить в программируемых логических контроллерах (ПЛК) и принтерах. Как для передачи, так и для приема данных необходимо по одной паре линий, при этом линии должны быть попарно скручены. Передача данных осуществляется в дуплексном режиме с программным квитированием. Линии передачи управляющих сигналов не предусмотрены. Значение тока 20 мА в петле соответствует состоянию логическая «I». Если цепь тока разорвана, это воспринимается как состояние логический «0». В каждой петле требуется формирующий ток источник, который может быть подключен либо на передающей, либо на принимающей стороне. Сторона, формирующая ток, считается «активной», «пассивная» же находится всегда напротив активной. Различают три конфигурации интерфейса:

  1. Полностью активные интерфейсы TTY с источниками тока как ветви передатчика, так и в ветви приемника.
  2. Пассивные интерфейсы TTY без соответствующих источников стабилизированного тока.
  3. Полуактивные интерфейсы TTY с источником тока только на стороне передачи (TD).

Приемник (RD) является пассивным. Каждая токовая петля может работать лишь с одним источником тока. Разрешены только комбинации «полностью активный/пассивный» и «полуактивный/полуактивный». Такая передача данных может быть реализована на расстояния до 1000 м. Максимальная скорость передачи составляет 19200 бит/с.

RS-422

Требования интеллектуальных машин к быстрым и высокопроизводительным средствам передачи данных описываются стандартом RS-422. Последовательная передача данных между двумя устройствами осуществляется в дуплексном режиме со скоростью до 10 Мбит/с на расстояния до 1200 м.

Интерфейс реализует как минимум один канал передачи данных (Т) и один канал приема данных (R). Координация приема/передачи осуществляется при этом на основе программного квитирования. В качестве варианта возможна передача с аппаратным квитированием. При этом требуется наличие каналов управления (I) и сигнализации (С). Высокая надежность передачи достигается путем измерения дифференциального напряжения между проводниками соответствующей скрученной пары. Паразитное напряжение, возникающее относительно общего провода, влияния не оказывает.

Электрические уровни в линиях передачи данных определены следующим образом:

  • от -0,3 до -6 для логической «1»
  • от +0,3 до +6 для логического «0».

Состояние сигнала характеризуется разницей напряжений между точками замера (А) и (В). Если напряжение в точке (А) по сравнению с напряжением в точке (В): — Отрицательно, то линия данных – лог. I, линия управления – лог.0, (UA-UB-0,3 B).

Оконченные сопротивления нагрузки (100…200 Ом) на входах приемника, не только препятствует отражению в линии передачи, но и дополнительно повышают надежность передачи благодаря четко выраженному результирующему току.

RS-485 W2

Этот тип последовательного интерфейса отличается не только высокой производительностью, как и интерфейс RS-422, но также допускает многоточечное подсоединение до 32 оконечных устройств. Электрические уровни и сопоставленные им логические значения идентичны определяемым стандартом RS-422. правда, из-за 2-проводной схемы соединения передача данных может осуществляться только в полудуплексном режиме, это означает, что передача и прием данных производятся попеременно и должны управляться соответствующей программой. Соответствующий программно реализуемый протокол должен в отличие от коммуникации по чистой схеме точка-точка обеспечить возможность обращения к каждому подключенному по многоточечной схеме оконечному устройству по адресу, а также идентификацию этого устройства. В каждый момент времени передавать данные может лишь одно оконечное устройство, все остальные должны в это время находиться в режиме «слушания». Двухпроводной шинный кабель может иметь длину до 1200 м, на его обоих концах должны быть подключены оконечные сопротивления нагрузки (100…200 Ом). Отдельные оконечные устройства могут удаляться от шины с использованием ответвлений на расстояние до 5 м. При применении попарно скрученного и экранированного кабеля максимальная скорость передачи данных составляет 10 Мбит/с. Стандарт RS-485 определяет всего лишь физические свойства интерфейса. Поэтому совместимость интерфейсов RS-485 между собой не обязательно гарантирована. Такие параметры, как скорость передачи, формат и кодирование данных определяются системными стандартами, например стандартами INTERBUS, PROFIBUS, MODBUS и т.п.

RS-485 W4

Стандарт RS-485 с 4-проводной схемой позволяет в противовес стандарту RS-485 с 2-проводной схемой осуществлять связь через шину в дуплексном режиме. Примером этого является измерительная шина DIN-Messbus. В отличие от 2-проводной технологии в этом случае ветви передачи приемника отделены друг от друга и поэтому могут работать одновременно. Топологии, основанные на принципе «ведущий/ведомый», применяются предпочтительно в измерительных шинных системах, в которых ведущее устройство ведет передачу данных максимально 32 ведомым, находящимся в режиме «слушания». Ветви передачи ведомых устройств могут находиться в третьем дискретном состоянии (tri-state), в котором поддерживается их высокое полное сопротивление. Только измерительная станция, к которой поступил запрос, активно подключает свой передатчик к шине. Электрические уровни и их логические значения соответствуют, как и во всех других интерфейсах типа RS-485, стандарту RS-422. Максимальная скорость передачи составляет 10 Мбит/с. Кабель шины должен иметь оконечные сопротивления, его жилы должны быть попарно скручены и экранированы.

Модем

Обычная телефонная сеть позволяет передавать только аналоговые сигналы в диапазоне частот от 300 Гц до 3,4 кГц. Поэтому для передачи через телефонную сеть цифровых сигналов от последовательных интерфейсов необходимо предварительное преобразование. Для этого требуется устройство, преобразующее поток цифровых данных в колебания аналоговых сигналов, а эти колебания затем обратно в поток цифровых данных. Эти процессы называют модуляцией и демодуляцией, а устройство, их выполняющее, соответственно модемом. Процесс образования коммутируемой связи соответствует международным стандартам. При этом несущая частота служит для синхронизации обоих модемов. С помощью общедоступной телефонной сети можно таким образом реализовать канал между устройствами, расположенными в любой точке мира. Но даже при использовании выделенной линии расстояния в 20 км не составляют проблемы.

Хотя требуется только два провода, передача данных чаще всего происходит в дуплексном режиме.

Максимальная производительность аналоговой линии составляет 33,6 кбит/с.

Передач а по стандарту V.90 со скоростью 56 кбит/с возможна только от интернет-сервера к модему. В обратном направлении, т.е. от модема V.90 к модему V.90, скорость передачи составляет максимум 33,6 кбит/с.

INTERBUS

INTERBUS представляет собой кольцевую систему. Передающая и принимающая линии объединены в один кабель, из-за этого INTERBUS воспринимается как древовидная структура с линиями, представленными ответвлениями от магистрального кабеля. Эти ответвления соединяются с удаленной шиной через ответвительные клеммные модули шины. Соединения между оконечными устройствами удаленной шины являются активными соединениями точка-точка, физический уровень соответствует стандарту RS-422. При этом полезные данные передаются как дифференциальные сигналы по попарно скрученным сдвоенным проводам (4 провода) в дуплексном режиме. Скорость передачи данных составляет 500 кбит/с или 2 Мбит/с. Возможная общая протяженность линий связи до 12,8 км, при этом система может включать в себя максимум 255 сегментов длиной до 400 м каждый.

Применение повторителей и согласующих резисторов-терминалов на конце линии не требуется, поскольку кольцо автоматически замыкается на последнем устройстве удаленной шины.

PROFIBUS

Шина PROFIBUS определена стандартами МЭК 61158 и МЭК 61784 и технически базируется на 2-проводной системе RS-485 с полудуплексным режимом передачи данных. Система Profibus построена как чисто линейная структура с возможностью подключения до 32 оконечных устройств, максимальная протяженностью сегмента шины составляет 1200 м. чтобы обеспечит помехоустойчивую работы шины, в частности, при высоких значениях скорости передачи данных, следует применять лишь те типы шинных кабелей, которые разработаны специально для шины Profibus. Оконечные устройства системы Profibus соединяются между собой путем прокладки двухжильного шинного кабеля со скрученными жилами. Если в сеть необходимо объединить больше оконечных устройств, то машину или промышленную установку необходимо сегментировать. Отдельные сегменты обмениваются между собой данными через повторители, которые обеспечивают усиление и разделение потенциалов сигналов, несущих полезную информацию. Каждый повторитель расширяет систему на один дополнительный сегмент с 32 оконечными устройствами и полной длиной кабеля, причем максимально можно подключить 127 оконечных устройств. Скорость передачи в системах Profibus может быть настроена в диапазоне от 9,6 кбит/с до 12Мбит/с. Значение скорости влияет на допустимую длину сегментов шины, а также пассивных ответвлений (таблица). Чтобы обеспечить надежную передачу данных, каждый сегмент шины Profibus на медном кабеле должен начинаться и заканчиваться согласующим резистором.

Скорость Длина сегмента Допустимая длина ответвления на один сегмент
9,6 кбит/с 1200 м 32х3 м
19,2 кбит/с 1200 м 32х3 м
45,45 кбит/с 1200 м 32х3 м
93,75 кбит/с 1200 м 32х3 м
187,5 кбит/с 1200 м 32х3 м
500 кбит/с 400 м 32х1 м
1,5 Мбит/с 200 м 32х0,3 м
3,0 Мбит/с 100 м Не допускается
6,0 Мбит/с 100 м Не допускается
12,0 Мбит/с 100 м Не допускается

CANopen/Device Net

Протокол локальной сети контроллеров (Controller Area Network (CAN)) был первоначально разработан для объединения в сеть автомобильной электроники. Путем расширения протокола были получены системы CANopen и Device Net для промышленных применений полевой шины.

Все оконечные устройства шины соединяют линейно трехжильным кабелем имеющим в начале и в конце согласующие сопротивления.

Оконечные устройства прослушивают обмен данными по шине и, дождавшись паузы, начинают передачу пакетов данных. Часто несколько оконечных устройств идентифицируют шину как свободную и начинают передачу данных одновременно. Поскольку разные пакеты данных при этом могли бы мешать друг другу, предусмотрен побитовый арбитраж, предотвращающий потерю данных. Этот механизм называют Carrier Sense Multiple Access with Collision Avoidment (сокращенно CSMA/CA – множественный доступ с контролем несущей и предотвращением конфликтов).

Оконечные устройства сравнивают уровни сигнала на шине с уровнями передаваемых ими сигналов. Эти уровни могут оказаться либо доминантными (уровень 0) или рецессивными (уровень I). Как только поверх собственной комбинации битов будет записан доминантный уровень, это означает, что другое оконечное устройство перешло в режим передачи. Оказавшийся рецессивным передатчик немедленно останавливает свою передачу и будет пытаться снова передать свой пакет данных уже во время следующей паузы. Сообщения, а тем самым и запросы на доступ к шине можно при раздаче адресов ранжировать по приоритетам в зависимости от количества доминантных бит.

Время распространения сигнала ограничивает максимально достижимую протяженность сети в зависимости от скорости передачи, так как метод CSMA/CA работает только в ограниченном временном окне. Это обязательно необходимо учитывать при проектировании.

Соотношение между скоростью передачи и максимальной длиной кабеля для шинной системы на базе DeviceNet и CAN

Ethernet

Ethernet описан в стандарте IEE 802 и был первоначально разработан для коммуникации между офисными устройствами (компьютерами, принтерами и т.п.). При этом была принята линейная топология и был применен коаксиальный кабель. В настоящее время сети строят исключительно с децентрализованной топологией типа «звезда» на основе витых пар или оптоволоконного кабеля. При этом в промышленных сетях скорость передачи данных составляет 10 или 100 Мбит/с. Структуру сети можно согласовать с требованиями каждого отдельного случая путем организации каскадов с помощью разветвителей типа «звезда» (концентраторы, коммутаторы, маршрутизаторы).

Если для распределения данных применяют концентраторы, система должна работать в полудуплексном режиме. В этом случае обмен данными обеспечивается механизмом Carrier Sense Multiple Access with Collision Avoidment (CSMA/CA – множественный доступ с контролем несущей и предотвращением конфликтов). При этом оконечные устройства прослушивают канал обмена информацией в сети и начинают передачу данных только после приостановки других передач. Пакет отсылается каждому оконечному устройству сети. Оконечные устройства сравнивают содержащийся в присланном пакете адрес получателя со своим собственным адресом и принимают пакет только в случае совпадения адресов. Часто несколько оконечных устройств идентифицируют шину как свободную и начинают передачу данных одновременно. Вследствие этого пакеты данных разрушают друг друга, В этом случае говорят о коллизии. Активное конечное устройство, первым обнаружившее коллизию, сразу же требует от всех оконечных устройств медленной остановки передачи данных. Чтобы пакеты данных не потерялись и их можно было бы послать вновь, передатчики должны получить квитирующее сообщение до того, как был послан последний бит сообщения.

Временные ограничения квитирующего сообщения при коллизии непосредственно влияют на максимальную протяженность сети. Так называемый коллизионный домен ограничивается сетевым адаптером, маршрутизатором или коммутатором. Такая сегментация сети устраняет ограничения сети с концентраторами, благодаря этому становятся возможными большая территориальная протяженность сети и оптимизация обмена данными.

В идеальном случае каждое оконечное устройство подключают к коммутационному порту, тем самым оно получает собственный коллизионный домен. Производительность сети повышается, поскольку коллизии исключены, механизм CSMA/CD можно отключить и эксплуатировать сеть в дуплексном режиме в полосе частот двойной ширины.

При монтаже следует учитывать тип применяемого устройства. В соответствии с интерфейсами DTE/DCE в случае устройств RS-232 имеются Ethernet-устройства с интерфейсами MDI или MDIx. Однотипные устройства необходимо всегда подключать соединительными кабелями со скрещенной разводкой, а устройства различного типа кабелями с разводкой 1:1.

С помощью внутренней коммутации, объединяющей множество устройств, возможно переключение интерфейса вручную или автоматически (функция авто согласования) непосредственно на месте установки. Благодаря этому во всех случаях имеется возможность соединения кабелем с разводкой 1:1.

Еще одним автоматическим механизмом является функция авто согласования скорости и режима работы, благодаря которой устройства выбирают общие для всех скорость и режим передачи (полудуплекс или дуплекс).

Интерфейсы связи

ООО «РУСИМПУЛЬС» на портале поставщиков

При объединении устройств в какую-либо систему обмена информацией вводится понятие интерфейса. В общем случае под интерфейсом связи понимают программы и аппаратуру, обеспечивающие связь между собой двух и более объектов. Каждому интерфейсу соответствуют определенные разъемы, уровни напряжения или тока, протоколы передачи данных.

Параллельные интерфейсы передают данные одновременно по множеству проводов, к ним применяется понятие разрядности.

Последовательные передают в каждый момент времени не более одного бита — скорость у них меньше, но линии связи намного дешевле. Поэтому практически все сети, предназначенные для обмена данными, используют последовательные интерфейсы.

При прохождении по линии сигнал «обрастает» помехами. На некотором удалении от источника сигнала уровень помех становится таким, что импульсы перестают распознаваться. Для борьбы с помехами принимаются меры: усиление сигнала, экранирование провода, промежуточные формирователи импульсов, передача дополнительных битов контроля и восстановления. Эффективный и дешевый способ борьбы с помехами — это объединение проводов в витые пары. Это позволяет на несколько порядков увеличить пропускную способность и дальность передачи проводных линий.

RS-232

Разъем RS-232

RS-232 — один из самых старый интерфейсов, применяемый до сих пор. Его еще называют СOM-порт. Данный интерфейс обеспечивает связь только между двумя объектами. Скорость обмена составляет до 115 Кбит/с на расстоянии до 15 метров. Возможно увеличение расстояния передачи данных до 100 метров со снижением скорости.

В персональных компьютерах и промышленных устройствах для RS-232 используется 9-контактный разъем DB-9. Данный интерфейс оставлен в использовании исключительно в целях совместимости со старым оборудованием и в современных ПК практически не встречается, т.к. почти повсеместно его вытеснил интерфейс USB.

RS-485

Данный интерфейс позволяет подключать несколько устройств в единую шину данных для обмена информацией. Все устройства, объединенные в сеть по стандарту RS-485, обмениваются данными по одной или двум витым парам проводов. Максимальное количество устройств в сети может достигать 256. Скорость по данному стандарту может достигать значения 2.4 Мбит/с на расстоянии до 100 м и 10 Мбит/с на расстоянии до 10 м (при использовании двух витых пар проводов).

Максимальная длина линии может достигать 1200 м на более низких скоростях. Стандарт RS-485 не специфицирует какой-нибудь определенный разъем и, соответственно, какую-либо распайку кабеля. Из-за своей универсальности получил широкое применение в автоматике.

RS-422

RS-422 идентичен по скоростным характеристикам и используемым типам кабелей с интерфейсом RS-485, но имеет ограничения по количеству устройств, подключенных в единую шину данных: в сети должно быть только одно передающее устройство и максимум десять принимающих. Как и стандарт RS-485 не указывает на тип разъемов и используется гораздо реже из-за ограничений по количеству устройств. К тому же он используется в основном для соединения только двух устройств, в чем схож с интерфейсом RS-232.

USВ

USB появился в 1996 году и очень быстро стал сверхпопулярным. Используется 4-жильный кабель, одна пара предназначена для приема-передачи данных, вторая — для подачи питания (5 Вольт постоянного тока) от хоста на подключаемые устройства.

Разъемы USB

По спецификации версии 2.0 обмен данными может производиться на трех скоростных режимах:

  • низкий — LS — 1.5 МБит/с,
  • полный — FS — 12 МБит/с,
  • высокий — HS — 480 МБит/с.

Как видим, скоростные способности USB весьма большие. Чего не скажешь о расстоянии, которое ограничивается длиной 3-5 метров. В кабеле USB 3.0 добавлены две пары проводов и увеличена скорость до 5 ГБит/с (SS — super speed), а в версии 3.1 — до 10 ГБит/с (SS+).

Ethernet

Ethernet – проводная технология, на которой построено подавляющее большинство локальных компьютерных сетей. Существует множество стандартов Ethernet, которые обозначаются по шаблону XBaseY, где X — число, обозначающее скорость в Мбит/с, например:

Сети Ethernet очень быстро монтируется. Для подключения разъема RJ-45 не нужно даже зачищать жилы. Они просто вставляются в коннектор в нужной последовательности и обжимаются. Изоляция в нужных местах прокалывается, получается надежный контакт.

Wi-Fi

Wi-Fi – беспроводная технология построения локальных сетей. Из-за своих преимуществ перед проводной технологией, главными из которых, пожалуй, являются мобильность устройств (непривязанность к определенному месту работы) и бескабельное развертывание сети, получил широчайшую популярность в современном мире: практически все смартфоны и ноутбуки используют встроенные Wi-Fi модули для подключения в локальную сеть.

Для общения между устройствами используются радиосигналы на безлицензироанных частотах 2,4ГГц и 5ГГц. Дальность работы определяется свойствами приемо-передающих устройств, наличием преград распространению сигнала и радиопомех.

Преобразователи интерфейсов

При сопряжении или объединении устройств с разными интерфейсами связи в единую сеть могут потребоваться преобразователи интерфейсов. Это могут быть простые устройства, меняющие распиновку или изменяющие уровни сигналов. Но обычно они имеют довольно сложные электронные схемы, с буферизацией и программной обработкой данных, переформатированием пакетов, изменением протоколов и т.д. С помощью таких преобразователей можно подключать устройства, использующие RS-232, в единую шину RS-485 или же использовать USB-порт для подключения к Ethernet.

Преобразователи интерфейсов

Если преобразователь интерфейса изменяет среду передачи (например, соединяет проводную сеть с оптоволокном), то его часто называют медиаконвертером.

Вас может заинтересовать

Пляжное табло традиционно отображает время, температуру воздуха и воды, волнение моря в баллах. Возможно измерение и отображение дополнительных метеопараметров: влажность воздуха, атмосферное давление, скорость и направление ветра. Все метеоданные считываются с собственных датчиков.

журнал «Наружка», №11/2011 (130) , издание для заказчиков рекламы в рамках релиза выставки «Реклама -2011» Ни для кого не секрет, что специализированная выставка — это не только источник знаний о текущих тенденциях, но и реальная экономия денег. Именно здесь порой можно провести грамотный.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *