Какие способы получения электроэнергии вы знаете
Перейти к содержимому

Какие способы получения электроэнергии вы знаете

  • автор:

Что такое возобновляемая энергия?

Возобновляемая энергия – это энергия, получаемая из природных источников, которые пополняются со скоростью, превышающей скорость ее потребления. Примерами таких постоянно пополняемых источников являются солнечный свет и ветер. Возобновляемые источники могут обеспечить огромное количество энергии и окружают нас повсюду.

В противоположность им ископаемые виды топлива – уголь, нефть и газ – являются невозобновляемыми ресурсами, на формирование которых уходят сотни миллионов лет. При сжигании ископаемых видов топлива для производства энергии происходят выбросы вредных парниковых газов, таких как углекислый газ.

Получение энергии из возобновляемых источников сопряжено с гораздо меньшими выбросам и, чем сжигание ископаемого топлива. Переход от ископаемых видов топлива, на которые в настоящее время приходится львиная доля выбросов, к возобновляемым источникам энергии имеет ключевое значение для преодоления климатического кризиса.

На сегодняшний день возобновляемые источники энергии являются более дешевой альтернативой в большинстве стран и создают в три раза больше рабочих мест, чем ископаемые виды топлива.

Ниже указано несколько распространенных возобновляемых источников энергии:

x

СОЛНЕЧНАЯ ЭНЕРГИЯ

Солнечная энергия является самым богатым из всех энергетических ресурсов и может использоваться даже в пасмурную погоду. Скорость, с которой солнечная энергия улавливается Землей, примерно в 10 тыс. раз превышает скорость, с которой человечество потребляет энергию.

Солнечные технологии могут обеспечивать тепло, охлаждение, естественное освещение, электричество и топливо для множества применений. Эти технологии позволяют преобразовывать солнечный свет в электрическую энергию с помощью фотоэлектрических панелей либо зеркал, концентрирующих солнечное излучение.

Хотя не все страны в равной мере обеспечены солнечной энергией, каждая из них может внести существенный вклад в энергетический баланс за счет энергии солнца как таковой.

В последнее десятилетие стоимость производства солнечных панелей резко упала, что сделало их не только доступным, но и зачастую самым дешевым способом получения электроэнергии. Солнечные панели имеют срок службы около 30 лет и выпускаются в разных оттенках в зависимости от типа материала, используемого при их производстве.

x

ЭНЕРГИЯ ВЕТРА

Ветроэнергетика использует кинетическую энергию движущегося воздуха с помощью больших ветряных турбин, расположенных на суше (наземные ветроэлектростанции) или в морской или пресной воде (морские/прибрежные ветроэлектростанции). Энергия ветра используется на протяжении тысячелетий, однако за последние несколько лет технологии наземной и морской ветроэнергетики эволюционировали в направлении максимального увеличения объема производимой электроэнергии за счет более высоких турбин и большего диаметра вращающейся части.

Хотя средняя скорость ветра сильно варьируется в зависимости от местности, мировой технический потенциал ветроэнергетики превышает мировой объем производства электричества, а большинство регионов мира располагают достаточными возможностями для создания значительного количества ветроэлектростанций.

Сильные ветры бывают во многих регионах мира, но иногда для выработки ветровой энергии больше всего подходят отдаленные районы. Морская ветроэнергетика имеет огромный потенциал.

x

ГЕОТЕРМАЛЬНАЯ ЭНЕРГИЯ

Геотермальная энергетика использует доступную тепловую энергию недр Земли. Тепло получают из геотермальных резервуаров посредством бурения скважин или иными способами.

Резервуары, которые по своей природе являются достаточно горячими и проницаемыми, называются гидротермальными резервуарами, а достаточно горячие резервуары, улучшенные с помощью гидравлической стимуляции – усовершенствованными геотермальными системами.

Оказавшиеся на поверхности жидкости разной температуры могут быть использованы для выработки электроэнергии. Технология производства электроэнергии из гидротермальных резервуаров является отработанной и надежной и применяется уже более 100 лет.

x

ГИДРОЭНЕРГИЯ

Гидроэнергетика использует энергию воды, перемещающейся с большей высоты на меньшую. Такая энергия может быть получена с помощью водохранилищ и рек. Гидроэлектростанции на водохранилищах задействуют находящиеся в них запасы воды, в то время как русловые ГЭС используют энергию доступного речного стока.

Гидроэнергетические водохранилища часто служат нескольким целям, обеспечивая питьевую воду и воду для орошения, возможность бороться с наводнениями и засухами, навигационные услуги и энергоснабжение.

В настоящее время гидроэнергетика является крупнейшим источником возобновляемой энергии в электроэнергетическом секторе. Она зависит от в целом стабильных режимов распределения осадков и может подвергаться негативному воздействию вызванных климатом засух или изменений в экосистемах, которые влияют на такие режимы.

Инфраструктура, необходимая для получения гидроэнергии, также может оказывать неблагоприятное воздействие на экосистемы. По этой причине многие считают малые гидроэлектростанции более экологичным вариантом, особенно подходящим для населения отдаленных районов.

x

ЭНЕРГИЯ ОКЕАНА

Для получения энергии океана применяются технологии, основанные на использовании кинетической и тепловой энергии морской воды – например, волн или течений – в целях производства электричества или тепла.

Океанические энергетические системы до сих пор находятся на ранней стадии разработки; в настоящее время тестируется ряд прототипов устройств, использующих волны и приливные течения. Теоретически энергия океана может легко превысить нынешние потребности человека в энергии.

x

БИОЭНЕРГИЯ

Биоэнергию получают из разных органических материалов, называемых биомассой, таких как древесина, древесный уголь, навоз и другие органические удобрения, применяемые для производства тепла и электроэнергии, и сельскохозяйственные культуры, применяемые для производства жидких видов биотоплива. Бóльшая часть биомассы используется в сельской местности для целей приготовления пищи, освещения и отопления помещений, а ее основными потребителями, как правило, являются более бедные слои населения развивающихся стран.

Современные системы биомассы включают специальные сельскохозяйственные культуры или деревья, остатки, образующиеся в процессе ведения сельского и лесного хозяйства, и различные потоки органических отходов.

При получении энергии посредством сжигания биомассы образуются выбросы парниковых газов, но в меньших объемах, чем при сжигании ископаемых видов топлива, таких как уголь, нефть или газ. Однако биоэнергию следует использовать только в ограниченных целях, учитывая потенциальное негативное воздействие на окружающую среду, связанное с масштабным увеличением лесных и биоэнергетических плантаций и, как следствие, с вырубкой лесов и изменениями в землепользовании.

Более подробная информация о возобновляемых источниках энергии представлена на следующих веб-сайтах:

Международное агентство по возобновляемой энергии | Возобновляемые источники энергии

Международное энергетическое агентство | Возобновляемые источники энергии

Межправительственная группа экспертов по изменению климата | Возобновляемые источники энергии

Устойчивая энергетика для всех | Возобновляемая энергия

Дополнительно

Возобновляемая энергия – обеспечение более безопасного будущего

Что такое возобновляемая энергия и почему она важна? Узнайте больше о том, почему переход на возобновляемые источники энергии — наша единственная надежда на более благополучный и безопасный мир.

Пять способов ускорить переход на возобновляемые источники энергии на данном этапе

Генеральный секретарь описывает пять важнейших действий, которым мир должен уделить первоочередное внимание, чтобы преобразовать наши энергетические системы и ускорить переход на возобновляемые источники энергии.

Вопросы климата

Узнайте больше о том, как последствия климатических изменений ощущаются в разных секторах и экосистемах, и почему мы должны беречь, а не эксплуатировать природные ресурсы в целях содействия борьбе с изменением климата.

5 альтернативных способов получения электроэнергии

Сегодня все больше внимания уделяется вопросу получения электрической энергии альтернативными способами. Как получить электричество? Скоро человечество столкнется с проблемой дефицита нефти, газа и угля. Также возможны сокращения добычи урана, который используется на атомных электростанциях. Поэтому у нас возникает логичный вопрос: что мы будем делать дальше? Ведь без электричества в мире начнется полный хаос, так как все глобальные сети работают за счет потребления электричества. К чему может привести конец эры углеводородов?

5 способов получения электроэнергии

Решением данной проблемы ученые занимаются уже несколько десятилетий. Появляется все больше разработок, связанных с получением электрического тока из альтернативных источников. Некоторые из них используются человеком довольно успешно. Многие страны мира стали задействовать силы природы для преобразования их энергии в электричество. В новостях часто сообщается об открытии новых электростанций, которые работают с использованием силы ветра, отлива и прилива морей, солнечной энергии и других.

Но чтобы сократить потребление электричества и создать благоприятные условия для работы оборудования, человек использует трехфазный стабилизатор напряжения или бытовые стабилизирующие устройства. Это позволяет частично решать вопросы с перепадами напряжения в быту и на производстве, а также создает экономически выгодные условия его потребления. Мы начали уделять больше внимания экономии энергоресурсов и улучшению качества их потребления.

Наука не стоит на месте

Сегодня человечество разработало множество способов, как получить электрический ток за счет природных явлений. Мы решили рассказать сегодня про 5 способов вырабатывания электроэнергии, которые считаем необычными по той причине, что они не набрали достаточной популярности. Может, некоторые из вас скажут, что они являются экономически затратными и неэффективными, но это не говорит о том, что человечество от них откажется.

Эти инновационные способы в ближайшее время смогут использоваться человеком, как новые источники получения электрического тока. Даже с появлением нефти человечество считало этот природный ресурс неэффективным и неизвестным, но сегодня она используется во многих областях нашей деятельности.

Сегодня мы еще точно не можем сказать, чем человечество заменит привычные электрические источники. Возможно, один из способов, который мы опишем ниже, станет альтернативным.

Морская вода

Запасы соленой воды на планете просто огромны, поэтому ученые решили разработать электростанцию, которая будет работать на данном ресурсе. Единственная электрическая станция была построена в Европе фирмой Starkraft. Электрическая энергия добывается по технологии использования осмоса. Если говорить простым языком, происходит смешивание соленой и пресной воды, что приводит к образованию энергии из-за увеличения энтропии жидкостей. Данная энергия необходима для приведения в действие гидротурбин электрогенераторов.

Этот способ не такой эффективный, как атомные электростанции, но он не наносит большого вреда окружающей среде.

Топливные элементы

Сегодня также разработана электростанция, которая работает на элементах топливного типа, имеющая мощность до 0,5 ГВт. Работает она за счет горения топлива в элементе, который перерабатывает энергию тепла в электрический ток. По сути, это дизельный генератор, в котором не используется дизельное топливо и генератор. Электростанция не загрязняет окружающую среду, так как не выбрасывает в атмосферу продукты горения. Также такой источник получения электрической энергии имеет высокий КПД.

Термические генераторы

Для того чтобы получить электрический ток можно использовать энергию тепла. Этой теории уже больше 100 лет, но сегодня она стала популярной из-за большого применения технологий по энергетической экономии. Сегодня данный способ используют и в промышленных масштабах. Например, в коммунально-отопительных системах получают тепло и электроэнергию для своих нужд.

Пьезоэлектрические генераторы

Закон сохранения кинетической энергии стал основой работ для получения электричества в экспериментальных установках — пьезоэлектрических генераторах. Их применяют в качестве эксперимента в зонах большого передвижения людей, танцполах, на железнодорожных вокзалах и в метро. Есть даже идея создавать «зеленые» фитнес-центры и спортзалы, в которых посетители смогут своими действиями производить до 3,6 мегават электричества в год.

Наногенераторы

Вы знаете, что в организме человека происходят микроколебания, которые можно преобразовать в электрическую энергию? Для преобразования небольших колебаний в организме человека в электрический ток используются наногенераторы. Такие технологии можно применять для зарядки мобильных устройств. Любое движение человека можно использовать для получения электрической энергии. Сегодня существует много разработок, которые объединяют использование наногенераторов и солнечных батарей.

Рекомендуемые статьи

ZipCharge Go — новинка в сегменте портативных аккумуляторов для электромобилей
  • 08.11.2021

Относительно недавно появились данные о том, что достаточно малоизвестный start — up , известный под наименованием ZipCharge, представил весьма перспективную разработку в сегменте портативных зарядных станций.

Как завести генератор зимой
  • 21.11.2021

Портативные генераторы уже давно стали привычным явлением: их активно применяют не только в коммерческих и промышленных, но и в частных целях. Отключения электричества, к сожалению, были и остаются проблемой для многих, но с помощью современной техники вполне можно «пережить» некоторые неудобства без централизованных поставок энергоносителей.

А что Вы знаете об источниках энергии?

Электроэнергия — ключевой ресурс для человечества, без которого мы не представляем уже нашу жизнь. Для выработки электричества мы используем традиционные и альтернативные источники энергии, со своими особенностями переработки, размещения в регионах, связанными с наличием тех или иных ресурсов: тепловые электростанции (ТЭС) вырабатывают энергию.

А что Вы знаете об источниках энергии?

AT27

Электроэнергия — ключевой ресурс для человечества, без которого мы не представляем уже нашу жизнь. Для выработки электричества мы используем традиционные и альтернативные источники энергии, со своими особенностями переработки, размещения в регионах, связанными с наличием тех или иных ресурсов:

  • тепловые электростанции (ТЭС) вырабатывают энергию при сжигании органического топлива (угля, мазута или газа);
  • гидроэлектростанции (ГЭС) генерируют энергию из потока воды;
  • атомные электростанции (АЭС) — энергия выделяется в результате деления ядер тяжелых элементов (уран, плутоний и др.);
  • ветроустановки — преобразовывают энергию ветра в электрическую. Использовать в районах со среднегодовой скоростью ветра 6 м/с;
  • приливная энергетика — энергию вырабатывают, используя силу приливов и отливов Мирового океана. Такие электростанции размещают у берегов, где отлив более 10 м;
  • гелиоэнергетика — генерируют электрическую энергию из солнечной. Солнечные лучи (фотоны) попадают на солнечные кремниевые батареи, которые преобразовывают солнечную энергию в электрическую;
  • МГД-генераторы — вырабатывают электроэнергию при движении плазмы в магнитном поле при температуре несколько тысяч градусов.

AT27

Отметим, что существует еще 5 перспективных способов альтернативных источников энергии:

  • из соленой воды. Энергию получают за счет физического эффекта — осмос при смешивании соленной и пресной воды;
  • из топлива. Путем сжигания топлива с твердооксидным электролитом;
  • преобразование тепловой энергии в электрическую с помощью термогенератора;
  • генерация кинетической энергии в электрическую с использованием пьезоэлектрических генераторов;
  • электрическая энергия микроколебаний в человеческом теле, используя наногенераторы.

И что Вы думаете касательно таких способов выработки электрической энергии? Насколько востребованы нетрадиционные источники энергии ближайшие десятки лет?

Способы получения электроэнергии: где мир берет силы для развития

С каждым годом мировое потребление электричества растет, поэтому приходится задействовать все доступные способы его выработки. Разбираемся, какие технологии получения электроэнергии существуют и как они влияют на окружающую среду.

Тепловая электростанция
Фото: aapsky / iStock

Тепловые электростанции как источник энергии

В 2021 году с помощью тепловых электростанций (ТЭС) получено 62% мировой электроэнергии. Они работают на органическом топливе — природном газе, угле, мазуте, торфе, горючих сланцах. Нагретая в котле вода превращается в пар, который подается в паровую турбину. В результате ее вращения механическая энергия преобразуется в электрический ток.

Преимущество ТЭС — сравнительно небольшие затраты на строительство и обслуживание. Но при производстве электроэнергии в атмосферу попадают большие объемы CO2 и других парниковых газов, вызывающих изменения климата, и вредные вещества, такие как оксид углерода, оксид серы, зола, сернистый газ. Они приводят к увеличению риска развития различных заболеваний.

Влияние энергетики на экологию — насколько вредны уголь, нефть и газ

Влияние энергетики на экологию — насколько вредны уголь, нефть и газ

И когда планета и люди вздохнут спокойно

Опасения вызывают и стремительно уменьшающиеся запасы природных ресурсов. По оценкам Минприроды, запасы нефти в России будут исчерпаны через 16-17 лет, а природного газа — через 20. Мировые залежи нефти закончатся позже — примерно через 50 лет.

С учетом вышесказанного многие государства начали активный переход на более безопасную для природы возобновляемую энергию — солнца, ветра и т. д. По-прежнему востребованы атомная и гидроэнергетика. Обеспечение всеобщего доступа к экологически чистым источникам энергии является одной из Целей устойчивого развития (ЦУР) Организации объединенных наций (ООН).

ГЭС «Илья-Солтейра» в Бразилии
Фото: edsongrandisoli / iStock

Перспективность гидроэлектростанций

Около 84% энергии, генерируемой на базе возобновляемых источников, вырабатывают гидроэлектростанции (ГЭС). Это одна шестая всей электроэнергии планеты. Большая часть мировой гидроэлектроэнергии производится в Бразилии, США, КНР, Канаде, России. По оценкам Международного энергетического агентства, в дальнейшем 80% ГЭС будут строиться в развивающихся странах с большим гидропотенциалом.

При работе гидроэлектростанций используется кинетическая энергия потока воды, приводящая в движение турбину. Для создания напора применяются плотины, специальные отводы, расположенные под наклоном (для горных рек), или аккумуляторные насосы, перекачивающие воду из одного резервуара в другой.

Гидроэнергетика использует возобновляемый ресурс и не дает вредных выбросов. Кроме того, мощность этого источника электроэнергии легко отрегулировать путем изменения интенсивности потока воды. С учетом этих преимуществ именно гидроэнергетику рассматривают как наиболее перспективную замену ТЭС.

Но строительство крупных ГЭС также оказывает негативное воздействие на окружающую среду. Так, из-за Иркутской ГЭС уровень воды в озере Байкал повысился на один метр, что вызвало оползни и разрушение берегов. Кроме того, строительство гидроэлектростанций приводит к ухудшению условий обитания растений и животных, в том числе к снижению концентрации кислорода в воде, нарушению путей миграции рыб.

10 причин, почему крупные ГЭС опасны для природы и человека

10 причин, почему крупные ГЭС опасны для природы и человека

Что не так с большими гидроэлектростанциями

Природоохранные организации предлагают ограничиться строительством малых и средних ГЭС. Эффективность этого решения уже подтверждена мировым опытом. Так, в Китае работает более 90 тыс. малых ГЭС. Они обеспечивают 30% электроэнергии, потребляемой сельскими регионами.

Солнечная электростанция в Китае
Фото: Jenson / iStock

Солнце как самый мощный источник получения электроэнергии

Согласно данным Европейской ассоциации солнечной энергетики SolarPower Europe, солнечные электростанции (СЭС) обеспечивают выработку 2,6% мировой электроэнергии. В то же время эта отрасль лидирует по объемам инвестиций. Эксперты Института энергетики НИУ ВШЭ отмечают, что в 2019 году прирост мощностей СЭС в 2,5 раза превысил введенные мощности угольных и газовых станций.

СЭС отражают лучи солнца с помощью зеркал, концентрируя их на приемнике, наполненном маслом или водой. Пар, выделяемый при нагреве жидкости, приводит в действие электрогенератор.

Солнечная энергетика обладает огромным потенциалом. Каждый квадратный метр космического пространства содержит около 1,3 тыс. Вт энергии солнца. Две трети этого количества преодолевают атмосферу и достигают поверхности нашей планеты. Ученые подсчитали, что за 18 ясных дней на Землю поступает столько энергии, сколько содержится во всех запасах нефти, угля и природного газа.

Мировыми лидерами по мощностям солнечной энергетики являются Китай, Германия, Япония и США. В нашей стране эта отрасль тоже развивается: уже построено около 80 крупных СЭС общей мощностью более 1,8 ГВт. Кроме того, государство поддерживает микрогенерацию — каждый человек может установить солнечный модуль, например за окном или на крыше, чтобы генерировать электроэнергию и продавать ее ресурсоснабжающим компаниям.

Как солнечные панели экономят плату за электричество

Как солнечные панели экономят плату за электричество

Пять выводов о том, как развивается частная солнечная энергетика в России

Средний срок службы солнечных батарей — 25-30 лет. Все это время обеспечиваются получение и передача электроэнергии потребителям без дополнительных затрат на обслуживание. Достаточно смывать с модулей пыль 3-4 раза в год. Передача электроэнергии осуществляется по электрическим сетям.

Ветер энергоперемен

Ветроэнергетика развивается быстрее, чем другие технологии ВИЭ. В 2020 году ее мощности увеличились на 95,3 ГВт, в 2021-м — на 93,6 ГВт. Общая мощность ветрогенераторов в мире равна 837 ГВт. К началу 2021 года на ВЭС приходилось 0,13% генерации в России.

Ветроэнергетика не загрязняет атмосферу, но шум и вибрации, создаваемые генераторами, отпугивают животных, обитающих поблизости. Также существует опасность гибели птиц, пролетающих рядом с лопастями. Но действие этих факторов не настолько велико, чтобы всерьез задуматься об отказе от энергии ветра. Так, по данным Европейской ассоциации ветряной энергетики (EWEA), от столкновения с ВЭС гибнет в 3,5 тысячи раз меньше птиц, чем от когтей и зубов кошек. Кроме того, в США создали систему, выключающую генератор при приближении охраняемых пернатых.

Несмотря на активное развитие сектора ВЭС, динамика его роста по-прежнему недостаточна для того, чтобы достичь углеродной нейтральности к 2050 году. По оценкам специалистов из Глобального совета по ветроэнергетике (GWEC), необходимо ежегодно строить в четыре раза больше турбин.

Эксперт: Россия может перейти с угля и газа на ветер

Эксперт: Россия может перейти с угля и газа на ветер

Ветровая электроэнергия в стране уже сопоставима по стоимости с традиционной

Тепловая энергия океана

Воды Мирового океана занимают около 70% поверхности планеты и накапливают большое количество тепловой энергии cолнца. Эту энергию преобразуют в электричество с помощью специального оборудования. Для его эффективной работы необходима разница температур между поверхностным и глубоким слоями воды не менее 20 °C.

Существует три вида океанических теплоэлектростанций (ОТЭС):

В системе открытого цикла прогретая солнцем океаническая вода превращается в пар в камере с низким давлением, снижающим температуру ее кипения. Пар запускает турбину, а на выходе холодная глубинная вода возвращает его в жидкое состояние.

В установках закрытого цикла теплая вода испаряет рабочую жидкость (пропан, фреон, аммиак), циркулирующую по замкнутой системе трубок и проходящую через теплообменник. В этом случае океаническая вода должна быть прогрета до нужной температуры.

В ОТЭС смешанного типа вода преобразуется в пар, который испаряет рабочую жидкость.

Описанный выше порядок получения электроэнергии при помощи ОТЭС подходит только для тропических регионов. Но планируется построить подобные станции и в Арктике, где они будут работать за счет разницы температур подледного слоя воды и воздуха, превышающей 26 °C.

Увеличение объемов использования тепловой энергии океана включено в национальные программы Индии, США, Швеции, Франции, Японии. Так, президент Франции поставил задачу: к 2030 году полностью перевести остров Реюньон на энергию ОТЭС.

Ростовская атомная электростанция
Фото: Эрик Романенко / ТАСС

Атомная энергетика

В мире функционирует более 400 ядерных реакторов, и еще 475 планируется построить. 98% атомных электростанций (АЭС) сконцентрировано в Европе, Северной Америке и Азиатско-Тихоокеанском регионе. В России АЭС вырабатывают 20% всей электроэнергии страны. Сейчас госкорпорация «Росатом» строит три новых энергоблока, в том числе инновационный реактор БРЕСТ-ОД-300 с замкнутым топливным циклом. Облученное топливо будет перерабатываться и использоваться повторно, благодаря чему система станет практически безотходной.

«Замести под коврик»: как в России утилизируют радиоактивные отходы

«Замести под коврик»: как в России утилизируют радиоактивные отходы

Грамотно ли в нашей стране поступают с атомными реакторами и топливом

В недавнем заявлении Еврокомиссии говорится, что ядерная энергетика поможет увеличить долю использования возобновляемых источников энергии и перейти к климатической нейтральности, то есть минимизировать влияние электростанций на климат. Этот способ получения электричества имеет еще одно достоинство: энергоемкость ядерного топлива в 10 4 раз больше нефти.

Климатолог Джеймс Хансен отметил, что переход на атомную энергетику может спасти 7 млн жизней в год. Именно столько людей умирает от загрязнения воздуха, вызванного выбросами теплоэлектростанций.

У развития атомной энергетики есть одно препятствие — негативные ассоциации, связанные с катастрофами в Чернобыле и Фукусиме. Но надежность современных ядерных реакторов не оставляет поводов для опасений: согласно исследованию медицинского журнала Lancet, атомная энергия по безопасности превосходит даже солнечные панели.

Подписывайтесь на наш канал в Яндекс.Дзен.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *