Мт3608 и sx1308 какой лучше
Перейти к содержимому

Мт3608 и sx1308 какой лучше

  • автор:

Мт3608 и sx1308 какой лучше

Текущее время: Сб мар 09, 2024 17:12:15

Часовой пояс: UTC + 3 часа

Запрошенной темы не существует.

Часовой пояс: UTC + 3 часа

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group
Русская поддержка phpBB
Extended by Karma MOD © 2007—2012 m157y
Extended by Topic Tags MOD © 2012 m157y

Работоспособность сайта проверена в браузерах:
IE8.0, Opera 9.0, Netscape Navigator 7.0, Mozilla Firefox 5.0
Адаптирован для работы при разрешениях экрана от 1280х1024 и выше.
При меньших разрешениях возможно появление горизонтальной прокрутки.
По всем вопросам обращайтесь к Коту: kot@radiokot.ru
©2005-2024

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Актуальные данные о спецоперации на Украине

Совсем недавно на глаза мне попался обзор линейных стабилизаторов напряжения на 3.3 Вольта.
Я даже принял участие в обсуждении, и как то там затронули тему питания устройств с 3.3 В питанием от литиевого аккумулятора.
А так как эта тема пересекалась с одним из моих будущих обзоров, то решил и я поэкспериментировать немного.

На самом деле эта тема тянется уже очень давно. По ТЗ мне надо питать устройство с напряжением питания 3.3 Вольта и током потребления около 0.5-0.7 Ампера. питать надо от литиевого аккумулятора.
Сначала хотел использовать линейный стабилизатор с ультра малым падением, но потом получил платку SEPIC конвертера и решил копать в этом направлении.
Первым делом хотел заказать микросхемы которые применены в готовом преобразователе, но мысль пошла дальше и привела к теме данного обзора и тому, что я в итоге сделал.

Так, стоп, что то я забежал далеко вперед, непорядок.

Заказано было две платы, вернее два лота.
В первом лоте было 5 плат, цена $1.94 за лот или 0.39 за штучку.

Пришли платы просто в конверте, пришли целыми, но не сказал бы что быстро, примерно за месяц.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Платки представляют из себя повышающий DC-DC преобразователь изначально настроенный на 5 Вольт.
Продаются просто линейками, если надо, то плату можно легко отломить как кусочек шоколадки.
Данный вариант разделения плат называется скрайбирование, в необходимых местах текстолит прорезается почти до нуля и когда надо — отламывается по этой линии.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Плата по сути примитивная (ну если не считать что в микросхеме куча элементов).
Когда выбирал что заказать, то рассудил так, в крайнем случае применю компоненты по отдельности, даже те же гнезда, они тоже денег стоят.
Пайка аккуратная, плата чистая.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Но разъем явно припаивали левой задней ногой, полная противоположность пайке с другой стороны, там скорее всего работал автомат.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

По плате была составлена схема. К слову я немного сделал неправильно, срисовав схему после экспериментов, но об этом позже.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Так как плата изначально явно задумывалась для питания от аккумулятора, то для исключения влияния проводов я по входу поставил конденсатор 330мкФ 6.3В.
Скажу сразу, все платы запустились без проблем.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Небольшой тест платы. Так как платы изначально брались под переделку, то он скорее просто для общего представления.
Стартует плата при напряжении чуть больше 1 Вольта, выходное напряжение немного завышено.
Слева на всех фотографиях блок питания (левый индикатор — напряжение, правый — ток), справа нагрузка, там индикаторы подписаны.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Максимальный выходной ток, который я смог получить от платы при питании 3.6 Вольта составил 0.55 Ампера.
При перегрузке микросхема просто уходила в защиту, температура в тестах не поднималась выше 70 градусов.
Небольшая справка, для конвертеров сделанных по топологии Step-Up самый тяжелый режим не КЗ, а перегрузка. При КЗ ток ограничен сопротивлением дросселя и падением на диоде, микросхема при КЗ отключена. А вот если защита сделана неправильно, то при перегрузке микросхема либо умрет от перегрева либо от превышения максимального тока силового ключа.
Сколько я не экспериментировал, плата работала корректно и при перегрузке уходила в защиту снижая выходное напряжение.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Проверил я и то, что творился на выходе преобразователя.
На осциллограмме явно видно, что родной конденсатор не справляется с пульсациями, добавление по выходу емкости в 100мкФ сводит пульсации почти на нет.
Делитель щупа осциллографа во время всех тестов стоял в режиме 1:1.
Как по мне, то преобразователь в исходном виде вполне неплох.
продавец декларирует 200мА от 1.5 Вольта питания и 500мА от 3 Вольт питания.
В реальности если и будет меньше, то ненамного.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Второй лот состоял из одной платы. Отзывы были весьма разными и не всегда хорошими, но так как эта плата также бралась под эксперименты, то мне было все равно.
Цена платы 0.6 доллара, ссылка на товар.

Здесь продавец уже немного защитил плату, обмотав ее пупыркой, кроме того сама плата находилась в герметичном антистатическом пакетике.
Заказана была одновременно с предыдущим лотом, и что самое удивительное. пришла также одновременно, вернее в один день.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Изначально я искал микросхему повышающего преобразователя с более-менее нормальными параметрами. Но поиск вывел в итоге меня на платы с этой микросхемой, которые стоили ненамного дороже, но при этом на них уже была и микросхема и дроссель и еще всякая мелкота.
Здесь уже нет разъема, так как плата изначально позиционируется как универсальный повышающий преобразователь.
На странице продавца указаны параметры —
Входное напряжение: 2 В ~ 24 В
Максимальное выходное напряжение: 28 В
Максимальный выходной ток: 2А
КПД: более 93%.
Размеры 36 мм * 17 мм * 14 мм.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Снизу компоненты отсутствуют, название платы совпадает с названием микросхемы, которая на ней установлена, собственно так я на нее и вышел.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Плата маленькая, особенно если учесть, что довольно много места занимают контактные площадки. Если контактные площадки отрезать, то размер станет заметно меньше.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Схема также простейшая, основана на микросхеме MT3608, на которую есть даже даташит.
причем параметры микросхемы весьма неплохие, собственно я сначала нашел даташит, потом микросхему, потом плату на ее основе.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

По плате также была начерчена схема, вывод 4 это вход управления микросхемой, для включения он должен быть соединен со входом питания.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А вот первое включение меня сильно удивило.
На первый взгляд на фото ничего необычного, включен БП, к выходу подключена электронная нагрузка и на индикаторе отображается ток нагрузки в 0.18 А.
Все нормально если бы не одно НО, регулятор тока нагрузки выкручен на минимум, а минимальный ток у нее 20мА.
Явно что то не так.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А «не так» оказалось в том, что плата на выходе имеет большие пульсации с высокой частотой (производитель декларирует частоту в 1.2 МГц).
После подключения параллельно выходу конденсатора емкостью в 100мкФ проблема нестабильной работы электронной нагрузки ушла.
Кроме того «помог» производитель, а вернее разработчик, разместив выходной конденсатор не около выходных клемм, а около микросхемы.
Стартует плата при 1.8 Вольта, установленное напряжение на выходе держит хорошо.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

В отзывах к плате писали, что выходное напряжение не регулируется.
Видимо человек просто не разобрался, хотя тут и производитель виноват.
Дело в том, что регулировка происходит на 8 оборотах подстроечника из 30! Да еще и при вращении влево О_о
Т.е. из привычного максимального положения крутим 22 оборота, при которых ничего не происходит и только последние 8 оборотов напряжение будет регулироваться, жуть.

Эта микросхема также не перегревалась в работе, правда и не выдала мне 2 Ампера.
При этом измерение температур показало, что при токах более 1 Ампера на плате начинает греться дроссель и выходной диод, это надо также иметь в виду.
Но стоит сказать, что 2 Ампера на выходе можно получить только при определенных условиях, и это максимум.

2 Ампера на выходе от нее получить конечно не выйдет, но это маркетинговая хитрость. У повышающего преобразователя выходной ток всегда меньше входного, чем больше разница напряжений, тем больше и разница токов.
При входном 5 Вольт и выходном 10 Вольт будет разница в 2 раза (без учета КПД). При выходном токе в 1 Ампер, входной будет 2 Ампера, а ток ключа вообще 4 Ампера, вот на этот ток и установлена защита в микросхеме.

Уже когда писал обзор, то понял что я подавал на входной электролит (как в первом случае 330мкФ 6.3 В) аж 10 Вольт, но так как конденсатор был качественный, то он отнесся к этому равнодушно.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А вот такие пульсации у платы без добавочного выходного конденсатора, неудивительно что нагрузка «сходила с ума».

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Так, пора перейти собственно к тому, зачем мне все это понадобилось (в смысле платы).
У меня уже был обзор готовой платы, полностью самодельного варианта, теперь попробуем сделать вариант с модернизацией готового преобразователя.

Ход мысли у меня бы примерно такой:
Надо широкий диапазон питания, соответственно надо SEPIC
После этого я начал искать специализированные микросхемы, затем подумал, а зачем мне собственно что то специализированное, если суть SEPIC преобразователя это модернизированный Step-up преобразователь.
Этот момент кстати очень важен, переделать можно именно повышающий, Step-down переделать нельзя по двум причинам —
1. У Step-down преобразователей силовой ключ стоит в положительном полюсе питания
2. Силовой ключ в таких преобразователях вполне может находится в полностью открытом состоянии, или закрываться на очень короткое время, что для повышающего почти однозначная смерть.

Нашел подходящую микросхему повышающего преобразователя и начал искать ее на Али, но в итоге нашел платы с ней.
После этого я поставил перед собой задачу получить SEPIC преобразователь путем минимальной доработки существующих плат повышающих преобразователей.

Ниже показаны оба типа преобразователей и видно, что отличие у них только в том, что в универсалом варианте добавлен дроссель и конденсатор, ВСЁ!

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Для начала я решил провести эксперимент над мелкими преобразователями. Я не зря заказал лот из 5 штук, дело было не только в экономии.
Дело в том, что топология универсального преобразователя подразумевает наличие двух одинаковых дросселей, а так как таких у меня дома не было, то я решил взять дроссель из такой же платы (плат то вообще пять).

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Попутно я пересчитал делитель обратной связи, сначала выяснив напряжение компаратора микросхемы.
В простенькой программе сделал источник 5.1 В (такое напряжение платы имеют на выходе), задал номиналы существующего делителя и получил около 1.22 Вольта.
После этого изменил выходное напряжение и подобрал один из резисторов так, чтобы на микросхему попадали те же 1.22 Вольта.
Эта операция не имеет отношения собственно к SEPIC преобразователю, просто мне надо было 3.3 Вольта, но из тех номиналов что были дома я смог подобрать только под 3.2 Вольта.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А вот здесь и вылезло то, что я перерисовал схему уже после тестов.
Я хотел применить минимум дополнительных компонентов.
Дроссель был взят от одной из плат, резистор взял из запасов (хотя можно было и его взять из другой платы), конденсатор выпаял из старой платы монитора.
Вот как раз конденсатор лучше было взять от одной из плат преобразователя (откуда выпаивал дроссель), так как там конденсаторы имеют даже большую емкость и все равно не нужны.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Диод выпаивается, на его место паяется конденсатор.
Около микросхемы зачищается площадка, к ней паяется один вывод дросселя, второй паяется к площадке где раньше был катод диода.
К этой же площадке теперь паяется анод диода, а катод к правому выводу резистора 3.3к (через него питается светодиод).
Также надо обязательно перерезать дорожку, место видно на фото.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пробуем.
Стартует от 1.28 Вольта

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Хоть плата и работает, но стабильность выходного напряжения оставляет желать лучшего.
При маленьком токе нагрузки и входном напряжении в 4.2 Вольта выходное поднимается до 3.6 Вольта. Не то чтобы критично, но не очень хорошо.
При токе более 500мА срабатывает защита и выходное напряжение падает.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Погоням плату в разных режимах я пришел к выводу, что максимальный выходной ток в моем диапазоне будет около 300мА, но при этом кратковременно можно понимать до 400мА.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

В процессе экспериментов я также пробовал увеличить емкость конденсатора между дросселями, но никакого заметного результата это не дало 🙁

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А вот уровень пульсаций получился весьма неплохим, слева в режиме повышения, справа — понижения.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Наигравшись с мелкими платками я перешел к более крупному «подопытному».
Суть доработки здесь абсолютно такая же, за исключением того, что плата была одна. Заказывал я ее одну потому, что необходимый дроссель у меня уже был в наличии.
Также доработке был подвергнут и узел регулировки выходного напряжения, путем полной ликвидации и замены на пару резисторов.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Здесь я также провел операцию по измерению опорного напряжения компаратора, у меня получилось 680мВ.
Для этого я выставил на выходе 10 Вольт, а потом выпаял подстроечный резистор и измерил его сопротивление в режиме делителя, на левой схеме он представлен верхними двумя резисторами.
Потом пересчитал делитель под необходимое мне напряжение (ну почти, у меня ближайшее было 3.5 Вольта), а потом забил на это, полез в даташит и узнал что на самом деле не 680мВ, а 600 :)))
В общем я применил нижний резистор на 2к, а верхний на 9.1к.
Эксперименты, они такие эксперименты :))))

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

После всех расчетов приступил к переделке.
1. Выпаиваем подстроечный резистор и постоянный резистор на 2.2кОм (ну или грубо — выпаиваем все резисторы).
2. На место постоянного резистора впаиваем резистор на 2к, перерезаем дорожку между дросселем и диодом.
3. С обратной стороны платы припаиваем второй резистор делителя (его потом можно изменить). Я долго думал, куда мне припаять этот резистор, даже забыв, что можно припаять его снизу :))
4. Между дросселем и диодом впаиваем конденсатор. Здесь та же ошибка, конденсатор можно было взять с одной из плат.
К дросселю припаиваем обрезок вывода какого нибудь радиоэлемента, направляем его в сторону скоса на дросселе.
Зачищаем и залуживаем площадку около выходных площадок.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Припаиваем дроссель одним выводом на площадку около выходных клемм, вторым (проволочным) к диоду. Я не зря обратил внимание на скос на дросселе, так он лучше становится.
Всё.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

В самом худшем режиме, при 2.6 Вольта на входе, плата сваливалась в защиту при токе около 700мА, в остальных режимах вела себя стабильно.
Вообще, в плане стабильности, плата стоит на голову выше предыдущих.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

При входном напряжении в 10 Вольт я спокойно получил выходной ток более 2 Ампер, но диод и дроссели грелись уже прилично, микросхема при этом имела температуру не более 70 градусов.
На последнем фото видно что при малом входном напряжении и выходном токе в 700мА напряжение на выходе опускается до 3 Вольт.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Выше я написал, что при входном напряжении около 2.9 Вольта (нижнее рабочее напряжение литиевого аккумулятора) я получил 770мА при напряжении 3 Вольта.
Мне показалось что виной тому малая емкость конденсатора, который установлен между дросселями, ради эксперимента я установил параллельно ему второй с такой же емкостью (на схеме указана уже суммарная емкость).

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

После замены выходной ток явно вырос и напряжение падало до 3 (вернее 3.04) уже при токе 1.11 Ампера.
Т.е. получается что с одним конденсатором максимальная выходная мощность при напряжении 2.9 Вольта была 2.31 Ватта, а при двух конденсаторах уже около 3.3 Ватта.
Мне кажется что это прогресс.
Вообще такие конденсаторы довольно дорогие и я бы вообще советовал поставить на это место родной конденсатор на 28мкФ взяв его со входа этой платы. На его место достаточно поставить керамический 0.22 (или пару) и электролит на 100-220мкФ.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Еще несколько тестов при разных входных напряжениях и выходных токах.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Тесты показали, что при работе от одного литиевого аккумулятора (диапазон 3-4.2 В) и выходном напряжении 3.3 Вольта плата нормально может выдать до ток 700мА.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Но вот пульсации у этой платы явно выше, пожалуй это единственный ее минус. Это пульсации с электролитом на 100мкФ по выходу.
Я выше писал, что скорее всего это обусловлено неправильной трассировкой, керамический конденсатор по выходу может улучшить ситуацию, но не думаю что сильно.
Вообще SEPIC считается самым «шумным» типом преобразователя, потому отчасти это его особенность.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Самые большие пульсации наблюдались конечно же при максимальных токах нагрузки. А более правильно — при максимальном входном токе.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Фото обоих плат после переделки. На большой плате дроссель гармонично вписался на место подстроечного резистора, мелкая плата внешне выглядит более грубо.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

А теперь сравнительное фото новых плат рядом с платой из этого обзора.
Видно что предыдущая плата кажется гигантом в сравнении с новыми.

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Пара Step-Up конвертеров и их небольшой апгрейд до SEPIC

Кстати я не сказал бы что большая плата из этого обзора сильно слабее. В прошом обзоре я тестировал преобразователь при входном напряжении в 14 Вольт, выходном 3.3 и токе 2.5 Ампера. Эта плата смогла выдать ненамного меньше.
Но цена.
Если предыдущий преобразователь стоил 5.7 доллара, то здесь, даже при худшем раскладе (покупка двух дорогих плат) вышла бы 1.2 доллара.
А если дома есть парный дроссель, то можно вообще уложиться в сумму около 0.8 доллара (плата + пара электролитов).

Суть данного обзора изначально стояла не в точном измерении характеристик, КПД и т.п. хотя я сделал достаточно разных измерений, а в том, чтобы получить универсальный преобразователь путем переделки дешевых повышающих.
Мне кажется что эксперимент удался, причем со второй платой я получил результат, сопоставимый с платой за 5.7 доллара, это более чем хороший результат.
А еще этот обзор может помочь в случае когда надо «здесь и сейчас», потому как плату повышающего преобразователя найти куда проще чем универсального (их вообще меньше в продаже, особенно в оффлайне).

Первая (мелкая) платка конечно слабовата, и напряжение у нее на выходе не так стабильно как у большой, но для ее переделки можно вообще ничего не покупать дополнительно, а сделать универсальный з двух повышающих.
При этом у нас останется запасная микросхема, диод, светодиод, разъем и несколько резисторов.
Вторая (большая) плата выходит несколько дороже и к ней надо либо дроссель, либо вторую такую же плату (это предпочтительнее).

Пару слов о платах в исходном виде.
Мелкие — Вполне себе рабочие платы, дешевые, не сильно мощные, при установке хотя бы небольшого электролита по выходу имеют низкие пульсации.
Заявленные 200мА (1.5В) и 500мА(3В) скорее всего не вытянут, но будут близки к этому.
Нагрев и надежность хорошая, я много раз перегружал плату, но она упорно уходила в защиту (защита не триггерная).

Большая — Ну тут отдельный случай. Реальный пример, как кривая проектировка может свести на нет хорошие характеристики установленных компонентов.
Да, компоненты на плате установлены нормальные, микруха вообще мне очень понравилась (надо будет купить с десяток в запас). Но тут и неправильная трассировка, и подстроченик включенный через одно место, и отсутствие электролитов по входу и выходу (при таких токах они уже не лишние).
Т.е. сама плата в том виде как есть мне не понравилась, но несложными усилиями от нее можно получить хороший результат. А еще лучше результат после переделки ее в универсальный преобразователь 🙂

На этом пожалуй вроде все, платы работают, профит получен, отчет написан, жду вопросов в комментариях 🙂

Эту страницу нашли, когда искали:
структурная схема чипа mt3608 , mt3608 расчет резисторов , datasheet mt 2149f , блок питания на mt3608 своими руками , к выходу повышайки подключить вход дпугой поыышайки , расчет sepic преобразователя pdf , включить последовательно два модуля мт3608 , как увеоичить ток на выходе мт3608 , повышайки соединить последовательно , повышающий dc-dc преобразователь в паралель , мт3608 в паралель , можно ли включать модуль mt3608 параллельно , hw668 dc-dc преобразователь нет регулировки , топология печатной платы для mt3608 , hw-668 подключение , как переделать понижающий dc dc в повышающий , hw-668 характеристики , b62871 аналог , схема hw-668 , микросхема 3 ноги 1.5в преобразователь , преобразователь напрежения с3.7 на5 в , mt3608 более мощный аналог , sx1308 схема доработка , sx1308 ограничение тока и напряжения , xr1151 аналог sx1308

Повышающий DC-DC преобразователь MT3608

Регулируемый повышающий DC-DC преобразователь на основе микросхемы MT3608. Выходное напряжение регулируется триммером на плате.

  • Входное напряжение : от 2 до 24В
  • Выходное напряжение: от 4 до 28В
  • Входной ток : 2А (максимум)
  • Ток холостого хода: 15мА
  • Эффективность преобразования: 92% (максимум)
  • Частота преобразования : 100 КГц
  • Выходные пульсации: 50 мВ (максимум )
  • Регулировка нагрузки: 0,5%
  • Регулирование напряжения: 0,5%
  • Рабочая температура: от -40 до +85 С
  • Размер: 48х22х14 мм

Рекомендуемые товары

Повышающий DC-DC преобразователь (micro USB)

Повышающий DC-DC преобразователь (micro USB)

Регулируемый повышающий DC-DC преобразователь c micro USB разъемом на вход ..

Повышающий DC-DC преобразователь SX1308 2.3-24В до 5-28В

Повышающий DC-DC преобразователь SX1308 2.3-24В до 5-28В

Регулируемый повышающий DC-DC преобразователь SX1308 2.3-24В до 5-28В ..

Повышающий DC-DC преобразователь J5019 c ЗУ

Повышающий DC-DC преобразователь J5019 c ЗУ

Модуль J5019 — это регулируемый повышающий DC-DC преобразователь c mi..

PD/QC Type-C триггер быстрой зарядки (5/9/12/15/20В, до 65Вт)

PD/QC Type-C триггер быстрой зарядки (5/9/12/15/20В, до 65Вт)

Модуль триггера PD/QC позволяет получить необходимое напряжение от блоков п..

Повышающий DC-DC преобразователь LM2577

Повышающий DC-DC преобразователь LM2577

Повышающий DC-DC преобразователь на базе микросхемы LM2577 с максимальным в..

Повышающий DC-DC Step Up преобразователь MT3608

Повышающий регулируемый DC-DC Step Up преобразователь на базе микросхемы MT3608 с максимальным выходным током 2 А.

Модуль преобразователя постоянного напряжения выполнен на микросхеме импульсного регулятора MT3608. Применяется для питания различных слаботочных микроэлектронных устройств, с невысоким уровнем энергопотребления. Преобразователь повышает уровень входного напряжения в диапазоне от 2 до 24 В до максимальных 28 В на выходе. Значение продолжительно потребляемого тока для подключаемой нагрузки рекомендуется не превышать более 2 А.

Регулятор МТ3608 способен стабилизировать напряжение на выходе при возможном колебании напряжении на входе. Эта способность крайне полезна в сетях с нестабильным или автономным питанием (например, постепенный разряд аккумуляторной батареи в рабочем режиме подключенного устройства-нагрузки).

Преобразователь МТ3608 используется для питания электронных плат от низкого и не стабильного постоянного источника напряжения, например от батареек или бортовой сети автомобиля.

На вход преобразователя MT3608, можно подключать: батарейки, блоки питания с выходным напряжением от 2 до 24 В, аккумулятор или гальванический элемент, солнечную панель, автомобильную розетку и любой другой источник постоянного напряжения от 2 до 24 В.

  • Повышающий DC-DC преобразователь позволяет получить стабилизированное напряжение постоянного тока на выходе больше, чем напряжение постоянного тока поданное на его вход.
  • Выходное напряжение модуля регулируется подстрочным резистором.
  • Преобразователь напряжения для создания различных робототехнических проектов. DC-DC Step Up модуль питания используется, когда от одного источника напряжения нужно запитать потребителей с разным входным напряжением.
  • Идеально подходит для питания переносных устройств с микроконтроллером типа Arduino, от одного или нескольких литий-ионных аккумуляторов.
  • Повышающий DC-DC Step Up преобразователь MT3608 может использоваться как драйвер светодиодов (LED driver), например, для автомобильных фар.

Характеристики DC-DC Step Up MT3608:
Входное напряжение: от 2 до 24 В
Выходное напряжение: от 5 до 28 В (рекомендуемое до 26 В)
Выходной ток: максимум 2 А
Рекомендуемый выходной ток: 1 А
Частота: 1.2 МГц
КПД: ≤93%
Размер: 30 х 17 х 14 мм

Посмотреть/скачать DataSheet микросхемы MT3608 (формат PDF размер 597 КБ)

Важно! Модуль является повышающим DC-DC преобразователем, поэтому входное напряжение должно быть меньше выходного напряжения!

Важно! Модуль MT3608 не имеет защиты от перегрузки, зато есть защита от короткого замыкания. Так же необходимо строго соблюдать полярность при подсоединении: в противном случае микросхема преобразователя придёт в негодность.

Преобразователь MT3608 совместим с разнообразными электронными платформами модульной сборки, такими как микроконтроллерные Arduino, STM, Teensy, PyCom, Wemos, одноплатные компьютеры наподобие известной Raspberry Pi, и с множеством других.

Преобразователь напряжения MT3608 нашел применение у радиолюбителей и гиков, для конструировании различных источников стабилизированного питания. Из-за своей низкой стоимости, повышающий стабилизатор стал очень популярным в сообществе Arduino. За счет низкого сопротивления встроенного в микросхему MOSFET ключа, dc-dc преобразователь имеет высокий КПД и практически не греется при максимальном допустимом токе 2 А.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *