По какой формуле определяется входное напряжение вольтметра
Перейти к содержимому

По какой формуле определяется входное напряжение вольтметра

  • автор:

Термин: Сопротивление входное

Под входным сопротивлением прибора (устройства) понимают сопротивление RВХ его входной цепи при пропускании через эту цепь тока Iвх.

При простой модели входного сопротивления по постоянному току RВХ представляют как величину активного сопротивления. В более сложной модели при работе на переменном токе RВХ представляют как величину импеданса на определённой частоте сигнала. Эти вопросы относятся к построению эквивалентной схемы входной цепи прибора (устройства).

Если специально не оговаривается, то величина входного сопротивления приводится для рабочего диапазона сигнала для данного входа при нормальной температуре окружающей среды. При превышении рабочего диапазона сигнала входное сопротивление может отличаться от входного сопротивления в рабочем диапазоне сигнала и даже можнет стать нелинейным из-за наличия во входной цепи защитных элементов ограничения напряжения. В выключенном (обесточенном) состоянии прибора входное сопротивление может резко отличаться от входного сопротивления в рабочем режиме.

Для приборов с входным коммутатором каналов входное сопротивление всегда нормируется для одноканального режима, при котором коммутационный процесс отсутствует. Это связано с тем, что коммутационный процесс вносит в цепь измерения динамический заряд коммутатора в момент переключения и тем самым усложняет саму модель входа такого прибора, в результате чего оценивать его по критерию «входное сопротивление» становится некорректно.

У приборов с входом напряжения входное сопротивление относительно высокое, поскольку данный вход параллельно подключают к цепи измерения.

У приборов с входом тока входное сопротивление относительно низкое, поскольку требуется последовательно включать такой прибор в цепь измерения.

Для усилителей заряда 1-го типа, преобразующих составляющую напряжения заряда, вход заряда имеет очень высокое входное сопротивление в режиме измерения.

Для усилителей заряда 2-го типа, преобразующих переменный заряд путём пропускания тока цепи заряда через вход (например, как у LE-41), вход имеет низкое входное сопротивление.

Для дифференциального входа применяется понятие входного сопротивления как для дифференциальной цепи X, Y (при условии соблюдения синфазного диапазона сигнала относительно AGND), так и для цепи синфазного сигнала при соединённых вместе входах X и Y (относительно AGND).

Измерить входное сопротивление можно методом вольтметраамперметра, контролируя напряжение и ток в цепи входа и вычисляя сопротивление по закону Ома для участка цепи. Но более точное измерение входного сопротивление прибора получается по двум измерениям для разных напряжений U1 и U2 и соответствующим измеренным токам I1 и I2; в этом случае входное сопротивление вычисляется по формуле:

Напоследок – лирическое отступление о философском смысле, связанном с понятием входного сопротивления прибора. Теоретически невозможно создать идеальный прибор, не влияющий на цепь измерения, поскольку невозможно измерить физическую величину, не отобрав из цепи измерения энергию. Это означает, что невозможно создать идеальные вольтметр и амперметр с бесконечно большим и, соответственно, бесконечно малым входным импедансом. Или, другими словами, достижимая точность измерения всегда конечна. Эти фундаментальные истины подтверждены известным в квантовой механике принципом неопределённости.

Понятие входного (внутреннего) сопротивления пассивной или активной электрической цепи являтся базовым понятием Теории линейных электрических цепей в курсе ТОЭ.

Перейти к другим терминам Cтатья создана: 16.07.2014
О разделе «Терминология» Последняя редакция: 03.03.2020

Пример использования термина

Термин используется для описания электрических свойств входов преобразователей и систем сбора данных.

По какой формуле определяется входное напряжение вольтметра

Шкала гальванометра имеет `N=100` делений, цена деления $$ \delta =1\mathrm.$$. Внутреннее сопротивление гальванометра $$ _=\mathrm \mathrm.$$. Как из этого прибора сделать вольтметр для измерения напряжений до $$ U=100 \mathrm$$ или амперметр для измерения токов силой до $$ I=1\mathrm$$?

Максимально допустимый ток `I_max` через гальванометр равен цене деления, умноженной на число делений: `I_max=delta*N=1*100=100` мкА. При максимальном токе напряжение на приборе максимально и по закону Ома (8) равно

Для использования этого гальванометра в качестве амперметра для измерения токов силой до `I=1` А необходимо параллельно с ним включить шунт, сопротивление которого найдём по формуле (15):

В этом случае максимальному отклонению стрелки на шкале гальванометра соответствует ток в цепи силой `I=1` А.

Для использования этого гальванометра в качестве вольтметра для измерения напряжений до `U=100` В необходимо последовательно с ним включить добавочное сопротивление, величину которого найдём из (16):

`R_»д»=(U/U_max -1)R_G=((100)/(0,1)-1)*10^3=999` кОм.

В этом случае максимальному отклонению стрелки на шкале гальванометра соответствует напряжение между точками подключения `U=100` В.

Для измерения сопротивления `R` проводника собрана электрическая цепь, показанная на рис. 11. Вольтметр `V` показывает напряжение `U_V=5` В. Показание амперметра `A` равно `I_A=25` мА. Найдите величину `R` сопротивления проводника. Внутренне сопротивление вольтметра `R_V=1,0` кОм. Внутреннее сопротивление амперметра `R_A=2,0` Ом.

Ток `I_A`, протекающий через амперметр, равен сумме токов `I_V` и `I_R`, протекающих через вольтметр и амперметр соответственно. Напряжения на резисторе `U_R=I_R*R` и вольтметре `U_V=I_V*R_V` одинаковы и равны показанию `U_V` вольтметра. Таким образом, приходим к системе уравнений

определяет величину `R` сопротивления проводника по результатам измерений. Заметим, что для приведённой схемы величина внутреннего сопротивления амперметра оказалась несущественной: `R_A` не входит в ответ.

Вольтметр-измеряем напряжение. Назначение, принцип работы, типы.

Вольтметр – это прибор, назначение которого измерять электродвижущую силу (ЕДС) на определенном участке электрической цепи, или проще – прибор для измерениянапряжения (разность электрических потенциалов). Этот прибор всегда подключается параллельно элементу питания или нагрузке. Измеренное значение вольтметр показывает в Вольтах.

Если говорить об идеальном вольтметре, то он должен обладать бесконечным внутренним сопротивлением, чтобы точно измерять напряжение и не оказывать побочного воздействия на цепь. Именно поэтому в приборах высокого класса стараются сделать максимально возможным внутреннее сопротивление, от которого зависит точность измерения и помехи, создаваемые вольтметром в электрической цепи.

вольтметр-7

Рисунок – Формулы измерения напряжения

Если говорить о способе монтажа, то вольтметры подразделяют на три основные группы:

вольтметр 6

Как становится ясно из названия, стационарные приборы используются там, где необходим постоянный контроль, щитовые – в распределительных щитках и на приборных панелях, а переносные – в компактных приборах, которые можно использовать в любом месте.

Рисунок – Схема подключения вольтметра

Посмотрите видео о подключении вольтметра:

По назначению все вольтметры делятся

Вольтметры переменного тока, как и постоянного используются для измерений в сетях с соответствующим типом тока, а вот селективные – могут отделять гармоническую составляющую сложного сигнала, и определять среднеквадратическое значение напряжения.

Импульсный вольтметр обычно используют для измерений амплитуды постоянных импульсных сигналов, а также они способны точно определить амплитуду одиночного импульса.

Фазочувствительные приборы могут измерять изменения составляющих комплексных напряжений, благодаря чему становится возможным точное исследование амплитудно-фазовой характеристики усилителей, и прочих подобных схем.

По принципу действия различают электронные (цифровые или аналоговые), и электромеханические вольтметры (электромагнитные, термоэлектрические, а также магнитоэлектрические, электродинамические и электростатические).

Все электромеханические приборы, за исключением термоэлектрических, по сути, являются обычным измерительным механизмом с показывающим устройством. Во всех них для расширения пределов измерений применяются дополнительные сопротивления.

Приборы данной категории, не смотря на довольно высокое внутреннее сопротивление, имеют относительно большую погрешность, что делает невозможным их использование в ходе экспериментов и исследований, где требуется повышенная точность данных.

Термоэлектрический вольтметр использует для замеров электродвижущую силу одной или нескольких термопар, которые греются из-за тока входящего сигнала. Они более точны и компактны, в сравнении с электромеханическими измерителями напряжения.

Электронные вольтметры в свою очередь подразделяются на цифровые и аналоговые.

Цифровой вольтметр преобразует постоянное значение напряжения в цифровой сигнал, который и выводится на табло прибора. Делается это при помощи аналого-цифрового преобразователя.

В аналоговых вольтметрах помимо магнитоэлектрического измерителя и дополнительных резисторов в обязательном порядке присутствует измерительный усилитель, позволяющий в несколько раз повысить внутреннее сопротивление прибора, и соответственно – улучшить точность показаний.

Рассмотрим несколько вольтметров разных производителей

Вольтметр 21. В3-57 – микровольтметр

Измерительное устройство модели В3-57 – вольтметр-преобразователь среднеквадратич. показаний. Разработан для замеров среднеквадратич. значения напряжений произвольной формы и их линейного преобразован. в напряжение постоян. тока. Шкала прибора промаркирована в среднеквадратич. значениях напряжения и децибелах (от 0 дБ и до 0,775 В). Используется при контроле и наладке разнообразных радиотелетехнических устройств и средств связи, вычислении частотных характеристик широкополосных аппаратов, обследованиях шумовых устойчивых сигналов и т. д.

– Пределы замеров напряжений 10 мкВ – 300 В с граничными зонами: 0,03-0,1-0,3-1-3-10-30-100-300мВ 1-3-10-30-100-300В

– Границы частот 5 Гц – 5 МГц

– Допустимая погрешность, %: ±1 (30-300 мВ), ±1,5 (1-10 мВ), ±2,5 (0,1-0,3 мВ и 1-300 В), ±4 (0,03 мВ)

– Входное сопротивл.5 МОм ±20%

– Входная емкость: 27пФ (0,03-300 мВ) и 12 пФ (1-300 В)

– Напряжение на выходе линейного преобразоват. 1 В

– Сопротивление на выходе линейного преобразоват. 1 кОм ±10%

– Предельный коэфф. амплитуды сигнала 6*(Uk/Ux)

Вольтметр 3

2.Вольтметры переменного напряжения АКИП-2401

– Измерение ср.квадратического значения переменного напряжения

– Диапазон частот: 5 Гц…5 МГц

– Диапазон измерения напряжения: 50 мкВ…300 В (6 пределов)

– Два измерительных ВЧ входа: Кан1 / Кан2

– Максимальное разрешение: 0,0001 мВ

– Отображение уровня входного сигнала в дБн, дБм, Uпик

– Автоматический или ручной выбор пределов измерений, удержание результата (Hold)

Вольтметр 43. Вольтметр В7-40/1

Высококачественный цифровой универсальный прибор, предназначенный для измерения постоянного и переменного напряжений, силы токов и сопротивления постоянному току. вольтметр В7-40/1 применяется при производстве радиоаппаратуры и электрорадиоэлементов, при научных и экспериментальных исследованиях, в лабораторных и цеховых условиях. Встроенный в вольтметр В7-40/1 интерфейс IEEE 488 позволяет успешно использовать его в составе автоматизированных информационно – измерительных систем.

Вольтметр В7-40/1 соответствует жестким условия эксплуатации.

– Точность измерения по постоянному току вольтметра В7-40/1 – 0,05 %

– Максимальная разрешающая способность В7-40/1 – 1 мкВ; 10 мкА; 1 мОм

– Диапазоны 0,2; 20; 200; 1000 (2000) В

– Разрешение 1, 10, 100 мкВ; 1; 10 мВ

– Основная погрешность измерения ±(0,04 %+ 5 ед. мл. р)

– на диапазоне 0,2 В не менее 1 ГОм

– на диапазоне 2 В не менее 2 ГОм

– на диапазонах 200….1000 В, не менее 10 МОм

Ещё одно видео о способе подключения вольтметра:

По какой формуле определяется входное напряжение вольтметра

Раздел 8 Измерения электрических величин

8.1 Измерения напряжений (токов).

Для измерения тока и напряжения применяют методы непосредственной оценки и сравнения. В лабораторном практикуме по электротехнике используется в основном метод непосредственной оценки.

Для измерения тока амперметр включают последовательно с нагрузкой R 1 (в разрыв ветви) (рис. 8.1).

В связи с тем, что сопротивление амперметра R А отлично от нуля, возникает методическая погрешность измерения, обусловленная включением амперметра:

Рисунок 8.1–Электрическая схема для измерения постоянного тока

Погрешность измерения тока за счет влияния сопротивления амперметра отрицательна, так как показание прибора несколько меньше того значения тока, которое было бы до момента включения прибора в цепь. Следовательно, максимальная погрешность измерения имеет место, если погрешность, определяемая классом точности прибора, также отрицательна.

Для измерения напряжения вольтметр присоединяют параллельно участку цепи, на котором нужно измерить падение напряжения (рис. 8.2).

Рисунок 9.2–Электрическая схема для измерения постоянного напряжения

Если к источнику ЭДС Е с внутренним сопротивлением Ri подключить резистор R, то в цепи будет протекать ток .

При этом падение напряжения на резисторе составит U = IR . После подключения вольтметра с входным сопротивлением RV сопротивление внешней цепи (относительно источника энергии) уменьшится. В результате ток в неразветвленном участке цепи увеличится:

причем I > I ‘ . В результате возрастает падение напряжения на внутреннем сопротивлении источника Ri и соответственно уменьшаются падение напряжения на резисторе R и показания вольтметра UV .

Абсолютная методическая погрешность измерения, возникающая за счет шунтирования резистора R сопротивлением R V , равна

Относительная методическая погрешность определяется по формуле

Очевидно, что абсолютная и относительная методические погрешности измерения будут стремиться к нулю, если → 0 . Поскольку значения Ri и R являются параметрами цепи и остаются неизменными, для уменьшения погрешности входное сопротивление вольтметра должно быть как можно больше (в идеале → ∞). Как указывалось ранее, большим входным сопротивлением обладают электронные вольтметры. Однако и их входное сопротивление R вх имеет конечное значение, величина которого зависит от предела измерения. Поэтому некоторая малая погрешность δV всегда имеет место.

Исходя из заданной методической погрешности δV , можно определить требуемое значение входного сопротивления вольтметра R вх из выражения:

При измерении напряжения переменного тока эквивалентная схема входного сопротивления вольтметра имеет вид, показанный на рис. 8.3.

Рисунок 8.3–Электрическая схема для измерения переменного напряжения

Комплексное входное сопротивление вольтметра:

Модуль входного напряжения:

Из приведенных выражений следует, что с увеличением частоты входное сопротивление вольтметра уменьшается из-за снижения емкостного сопротивления. В результате возникает дополнительная методическая частотная погрешность вольтметра. В описании прибора указывается значение R вх и значение C вх вольтметра для различных пределов измерения. Обычно R вх =10 5 …10 8 Ом, C вх = 30…70 пФ.

Погрешность измерения за счет шунтирующего действия входной цепи вольтметра можно определить, если измеряемую цепь представить схемой (рис. 8.4), состоящей из эквивалентного генератора с ЭДС холостого хода UX , соответствующего измеряемому напряжению и с внутренним сопротивлением R экв , соответствующим эквивалентному сопротивлению в точках подключения вольтметра.

Рисунок 8.4–Расчетная схема

Относительную погрешность измерения (в %) можно определить по формуле

На практике при измерениях на частотах меньше 20 кГц частотной погрешностью вольтметра можно пренебречь.

Основная приведенная погрешность зависит от значения измеряе­мо­го напряжения. Так, при измерении малых (в пределах 100…300 мВ) напряжений она может достигать 10…15 %, а при измерении больших уровней напряжения – уменьшается в 3–4 раза.

На погрешность измерения (на частотах выше 0,1…0,3 МГц) оказывают влияние индуктивность и активное сопротивление соединительных проводов. Поэтому их длины должны быть по возможности меньшими (до 0,5 м ).

При измерении напряжений следует обратить особое внимание на выбор предела измерений (так же, как и при измерении тока).

У электронных вольтметров имеется два входных зажима, к которым подключается измеряемое напряжение U . Один зажим обычно соединен с корпусом прибора, поэтому его называют корпусным и обозначают . Другой зажим является потенциальным.

Для уменьшения погрешности измерения и влияния помех корпусный зажим вольтметра соединяется с корпусным зажимом генераторов и других приборов (используемых в эксперименте) или присоединяется к точкам цепи, потенциал которых ближе к нулевому. При этом следует избегать касания корпусов приборов.

Таким образом, при измерении напряжений нужно брать приборы с большим внутренним сопротивлением и выбирать пределы измерения так, чтобы при измерении стрелка прибора отклонялась на возможно больший угол.

Измерение мощности. Измерение мощности в цепях постоянного тока, активной и реактивной мощностей в цепях переменного тока (однофазных и трехфазных) промышленной частоты производится обычно электродинамическими и ферродинамическими ваттметрами.

Схема подключения ваттметра PW для измерения в цепях постоянного тока или в однофазной цепи переменного тока приведена на рис. 8.5.

Рисунок 8.5–Электрическая схема для измерения мощности

Такая схема включения обеспечивает минимальную погрешность измерения, когда сопротивление нагрузки намного больше сопротивления токовой катушки ваттметра, что в большинстве случаев имеет место. При этом неподвижная (токовая) катушка ваттметра включается в разрыв цепи, а подвижная катушка (напряжения) подключается параллельно нагрузке.

Начала катушек (генераторные зажимы) обозначаются звездочкой (*) или знаком (+). Эти зажимы должны быть подключены к положительному полюсу источника питания.

В цепях постоянного тока потребляемая нагрузкой мощность определяется произведением тока в нагрузке на падение напряжения на ней: P = UI .

При измерении мощности в однофазной цепи переменного тока показание ваттметра соответствует активной мощности (Вт):

P = UI cosφ ,

где U и I – среднеквадратические значения напряжения и тока нагрузки; φ – фазовый сдвиг между током и напряжением.

При этом обмотка напряжения ваттметра включается на фазное напряжение, а обмотка тока включается в рассечку провода фазы.

Реактивная мощность (в варах) в лабораторном эксперименте обычно не измеряется, а определяется из выражения

Q = UI sinφ .

Для нахождения мощности в трехфазной четырехполюсной цепи при несимметричной нагрузке необходимо взять алгебраическую сумму показаний трех ваттметров, включенных в каждую фазу:

8.2. Косвенные измерения

При прямых измерениях не всегда удается получить значение всех исследуемых величин (токов, напряжений, мощности, фазы и др.) методом прямого измерения. Это обусловливается отсутствием специальных приборов прямого измерения или невозможностью подключения прибора к некоторым элементам цепи и другими причинами.

Кроме того, не всегда целесообразно производить непосредственное измерение всех интересующих величин, если они могут быть получены с достаточной точностью из функциональных зависимостей, связывающих их с измеряемыми величинами. Это позволяет проводить эксперимент быстрее и с меньшими аппаратурными затратами за счет уменьшения числа измерений.

Измерение тока с помощью электронных вольтметров. Косвенный метод измерения тока с помощью электронного вольтметра заключается в следующем. В ветвь, в которой необходимо измерить ток, последовательно с нагрузкой включают образцовый резистор R 0 . Падение напряжения на этом резисторе измеряют с помощью электронного вольтметра, так как он работает в широком диапазоне частот и потребляет от измеряемой цепи малую мощность, что способствует обеспечению минимума методической погрешности.

Ток, текущий через резистор R 0 , а следовательно, и по всей цепи (рис. 8.6), определяется законом Ома: , где U 0 показание вольтметра, включенного параллельно резистору R 0 .

Рисунок 8.6–Измерение тока с помощью электронного вольтметра

Включать резистор R 0 следует в разрыв проводника, идущего от корпуса генератора.

В этом случае корпусная точка измерительного прибора соединяется с корпусом генератора, что обеспечивает меньшее влияние помех и стабильность работы вольтметра. Минимум методической погрешности обеспечивается при правильном выборе сопротивления резистора R 0 . Чем меньше сопротивление R 0 , тем меньше оно оказывает влияние на ток, протекающий в искомой ветви.

С другой стороны, чем меньше падение напряжения на резисторе, тем труднее его точно измерить, поскольку больше сказывается влияние различных наводок, увеличение погрешности вольтметра на малых пределах измерения. Поэтому сопротивление R 0 , а, следовательно, падение напряжения на нем должны быть наибольшими. В этом случае принимают компромиссное решение, выбирая сопротивление R 0 по условию: R 0 < 0,1 Z Н , здесь Z Н – модуль сопротивления ветви в том месте, где измеряется ток. В этом случае ток в ветви при включении резистора R 0 изменится незначительно. Значение сопротивления цепи Z Н можно определить с помощью приближенного предварительного расчета или экспериментально. В лабораторных стендах имеются эталонные резисторы, сопротивление которых составляет 1 Ом, или любые другие, набранные с помощью магазинов сопротивления. Для этих целей можно использовать также резисторы цепи с известным сопротивлением.

Косвенный метод измерения тока наиболее широко применяется в цепях переменного тока с частотой от 500 Гц до 10 МГц.

Измерение мощности. Сущность косвенного измерения мощности в цепях постоянного тока заключается в измерении с помощью вольтметра и амперметра напряжения U и тока I цепи, в вычислении мощности по ранее приведенной формуле P = UI .

Анализ показывает, что погрешность измерения мощности будет минимальной при включении измерительных приборов по схеме, приведенной на рис. 8.7,а, если выполняется условие

где – сопротивление нагрузки; R А – сопротивление амперметра; – сопротивление вольтметра, или по схеме рис. 8.7,б при условии

Рисунок 8.7–Электрическая схема для измерения мощности
косвенными методами

Учитывая, что R V является весьма большим, а R А – весьма малым, можно считать I ≈ I н , U ≈ U н .

Для известного сопротивления нагрузки R н потребляемая им мощность определяется из выражения P = I 2 R н .

Для измерения мощности косвенным методом в цепях переменного тока применяются амперметр, вольтметр и фазометр. При этом активная мощность Р определяется по формуле .

Если прямым методом измерены значения напряжения U , тока I и мощности P , величина cosφ определяется расчетным путем: с osφ =

Измерение параметров электрической цепи R , С, L, Z . Основными элементами электрической цепи с сосредоточенными параметрами являются: резистор, конденсатор, катушка индуктивности. Им соответствуют основные параметры: активное сопротивление электрическому току R , емкость С, индуктивность L .

Метод амперметра-вольтметра. Этот метод основан на раздельном измерении тока I в цепи измеряемого сопротивления R Х и напряжения U на его зажимах и на последующем вычислении значения R Х по показаниям измерительных приборов:

При измерении малых сопротивлений порядка 0,01…100 Ом постоянному току применяют схему, показанную на рис. 8.8,а. С помощью реостата R 1 устанавливают приемлемое значение тока в цепи.

Рисунок 8.8–Измерение параметров электрической цепи

В схеме (см. рис. 8.8,а) вольтметр показывает значение напряжения на зажимах R Х ( U = U Х ), амперметр – сумму токов I А = I V + I , следовательно

где IV – ток, проходящий через вольтметр; RV – внутреннее (входное) сопротивление вольтметра

Абсолютная методическая погрешность Δ R Х определяется по формуле

а относительная погрешность (в %)

Для измерения больших сопротивлений (до сотен кОм и более) применяют схему (рис. 8.8,б), где амперметр регистрирует значение тока в цепи R Х ( I = I А ), а вольтметр – сумму падений напряжений ( U + UA ) .

По показаниям приборов можно вычислить результат измерения

где R А внутреннее сопротивление амперметра.

Абсолютная погрешность и относительная (в %) .

Учитывая, что R А RX , можно считать U ≈ UV .

Нужно иметь в виду, что погрешность измерения методом вольтметра и амперметра всегда больше суммы приведенных погрешностей используемых приборов. Однако, считая, что знак погрешностей измерения известен, их можно всегда учесть.

Метод амперметра-вольтметра можно применять для измерения на переменном токе модуля полного сопротивления цепи Z Х по схеме, представленной на рис. 8.9.

Рисунок 8.9–Электрическая схема для измерения модуля полного сопротивления цепи

где R , X – соответственно активная и реактивная составляющие сопротивления.

Для обеспечения минимальной погрешности измерения входное сопротивление вольтметра на частоте измерения должно удовлетворять условию Z вх >> Z Х .

Из предыдущего выражения следует, что метод амперметра-вольтметра можно применять для измерения активного сопротивления резистора переменному току R , когда его индуктивными и емкостными составляющими сопротивления можно пренебречь; а также для измерения индуктивности L катушки и емкости С конденсатора, отличающихся высокой добротностью (т.е. когда активное сопротивление катушки R L чрезвычайно мало, а сопротивление изоляции конденсатора весьма велико).

где f – частота питающего напряжения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *