Что такое bjt транзистор
Перейти к содержимому

Что такое bjt транзистор

  • автор:

Введение в биполярные транзисторы (BJT)

Изобретение биполярного транзистора (БТ, BJT) в 1948 году привело к революции в электронике. Технические трюки, ранее требующие относительно больших, механически хрупких, потребляющих много энергии вакуумных ламп, неожиданно достигались с помощью крошечных, механически прочных, потребляющих мало энергии частиц кристаллического кремния. Эта революция позволила разработать и изготовить легкие, недорогие электронные устройства, которые мы сейчас считаем само собой разумеющимися. Понимание того, как работают транзисторы, имеет первостепенное значение для всех, кто интересуется электроникой.

Я собираюсь максимально сосредоточиться на практических назначении и применении биполярных транзисторов, а не исследовать квантовый мир теории полупроводников. Обсуждение электронов и дырок, по-моему, лучше оставить для другой главы. Здесь я хочу выяснить, как использовать эти компоненты, а не анализировать их внутренние детали. Я не хочу умалять важность понимания физики полупроводников, но иногда интенсивное фокусирование на физике твердотельных приборов умаляет понимание функций этих приборов на уровне компонентов. Однако, используя этот подход, я полагаю, что читатель обладает определенными минимальными знаниями о полупроводниках: о разнице между легированными «P» и «N» полупроводниками, о функциональных характеристиках PN (диодного) перехода, о значениях терминов «обратное смещение» и «прямое смещение». Если эти понятия вам не совсем ясны, то прежде, чем приступить к этой главе, лучше обратиться к предыдущим главам этой книги.

Биполярный транзистор состоит из трехслойного «сэндвича» из легированных полупроводниковых материалов, либо P-N-P на рисунке ниже (b), либо N-P-N на рисунке ниже (d). Каждый слой, образующий транзистор, имеет определенное название, и каждый слой снабжен проводным контактом для подключения к внешней схеме. Условные графические обозначения показаны на рисунке ниже (a) и (c).

Биполярный транзистор (БТ, BJT): PNP (a) условное обозначение и (b) физический макет, NPN (c) условное обозначение и (d) физический макет

Функциональной разницей между PNP транзистором и NPN транзистором является правильность (полярность) смещения перехода во время работы. Для любого заданного режима работы направления токов и полярности напряжений для каждого типа транзисторов находятся в точности противоположно друг другу.

Биполярные транзисторы работают как регуляторы тока, управляемые током. Другими словами, транзисторы ограничивают величину проходящего тока в соответствии с меньшим управляющим током. Основной поток электронов, который управляется, протекает от коллектора к эмиттеру или от эмиттера к коллектору в зависимости от типа транзистора (PNP и NPN, соответственно). Маленький поток электронов, который управляет основным током, протекает от базы к эмиттеру или от эмиттера к базе опять же в зависимости от типа транзистора (PNP и NPN, соответственно). В соответствии со стандартами обозначений полупроводниковых приборов стрелка всегда указывает в направлении, противоположном направлению потока электронов (рисунок ниже).

Маленький поток электронов база-эмиттер управляет большим потоком электронов коллектор-эмиттер, протекающим в направлении, противоположном направлению стрелки эмиттера

Биполярные транзисторы называются биполярными потому, что основной поток электронов через них происходи в двух типах полупроводникового материала: P и N, поскольку основной ток идет от эмиттера к коллектору (или наоборот). Другими словами, два типа носителей заряда – электроны и дырки – входят в состав этого основного тока через транзистор.

Как вы можете видеть, управляющий ток и управляемый ток всегда соединяются вместе в выводе эмиттера, и их электроны всегда текут против направления стрелки транзистора. Это первое и главное правило в использовании транзисторов: все токи должны протекать в правильном направлении, чтобы устройство работало как регулятор тока. Маленький управляющий ток обычно называют просто током базы, потому что он является единственным током, который проходит через вывод базы транзистора. И наоборот, большой управляемый ток называется током коллектора, потому что он является единственным током, который проходит через вывод коллектора. Ток эмиттера представляет собой сумму тока базы и тока коллектора в соответствии с законом токов Кирхгофа.

Отсутствие тока через базу транзистора выключает его подобно разомкнутому ключу и предотвращает протекание тока через коллектор. Ток базы превращает транзистор в что-то похожее на замкнутый ключ и дает пропорциональному значению тока пройти через коллектор. Ток коллектора в основном ограничивается током базы, независимо от величины напряжения, доступного для его раскачки. В следующем разделе будет более подробно рассмотрено использование биполярных транзисторов в качестве переключающих элементов.

Подведем итоги:

  • Биполярные транзисторы названы так потому, что контролируемый ток должен проходит через два типа полупроводникового материала: P и N. Ток в разных частях транзистора состоит из обоих потоков: и электронов, и дырок.
  • Биполярные транзисторы состоят либо из P-N-P, либо из N-P-N полупроводниковой «сэндвичной» структуры.
  • Три вывода биполярного транзистора называются эмиттер, база и коллектор.
  • Транзисторы функционируют как регуляторы тока, позволяя небольшому току управлять большим током. Величина тока, доступного между коллектором и эмиттером, в основном определяется величиной тока, протекающего между базой и эмиттером.
  • Для правильного функционирования транзистора в качестве регулятора тока, управляющий (базовый) ток и управляемый (коллекторный) ток должны идти в правильных направлениях: складываться в эмиттере, поток электронов должен быть направлен противоположно направлению стрелки эмиттера, и, следовательно, направление электрического тока (протекающего от «+» к «–») должно совпадать с направлением стрелки эмиттера.

Биполярные транзисторы

Формула

Биполярный транзистор представляет собой трехвыводной полупроводниковый пробор с тремя чередующимися слоями полупроводника разного вида проводимости, на границе раздела которых образуется два р-n перехода. В современной электронике биполярные транзисторы уже практически не используются как силовые ключевые элементы. Причиной этого является низкое быстродействие, в сравнении с MOSFET-транзисторами, сравнительно большее энерговыделение, большие мощности управления, сложности параллельного включения и т.д. Поэтому в данной работе биполярные транзисторы будут рассматриваться с целью использования в качестве функциональных элементов (систем обратной связи, усилительных каскадов и т.д.).

Биполярные транзисторы имеют два основных типа структуры:

Достаточно подробно про внутреннюю структуру транзисторов изложено в [Пасынков В.В., Чиркин Л.К. Полупроводниковые приборы. Лань. 2002. 479 с.]. Резюмируя можно сказать, что быстродействие n-p-n транзистора существенно больше быстродействия p-n-p структуры. По этой, а также еще по нескольким причинам n-p-n транзисторов по номенклатуре существенно больше, чем p-n-p транзисторов. Вот такая ассиметрия.

Области использования биполярных транзисторов:

  • в линейных стабилизаторах напряжения;
  • в усилительных каскадах электронных схем;
  • в генераторных устройствах;
  • в качестве ключевого элемента;
  • в качестве элемента логических схем;
  • и т.д. и еще много где применяется, не зря за него Уильяму Шокли, Джону Бардину и Уолтер Браттейну нобелевскую премию дали.

Биполярный транзистор имеет два p-n перехода – эмиттерный и коллекторный. База у переходов общая. Биполярный транзистор управляется током.

Условное обозначение биполярных транзисторов n-p-n и p-n-p структур показано на рисунке BJT.1.

Классификация биполярных транзисторов

Биполярные транзисторы условно подразделяются на различные типы в соответствии со следующими измерениями параметров:

  • рабочая частота;
  • рассеиваемая мощность;
  • структура (обычный транзистор или составной транзистор Дарлингтона);
  • и разумеется тип полупроводниковой структуры – n-p-n и p-n-p.
Основные схемы включения биполярного транзистора

Мы не будем вдаваться в подробности внутренней кухни транзистора в сложные хитросплетения взаимодействия мужественных электронов и женственных дырок. Просто рассмотрим транзистор как маленький черный ящик с тремя ножками. Существует три основных способа включения трех ножек транзистора:

  • схема с общим эмиттером;
  • схема с общей базой;
  • эмиттерный повторитель.

Схема с общим эмиттером

Схема с общим эмиттером – самая распространённая схема включения биполярного транзистора (рисунок BJT.3). Обеспечивает усиление сигнала, как по напряжению, так и по току. Обеспечивает максимальное усиление по мощности среди всех прочих схем включения биполярного транзистора. В данной схеме протекание тока по цепи база-эмиттер IB (часто просто называемый ток базы) приводит к протеканию тока в цепи коллектор-эмиттер IC (называемый обычно просто током коллектора). Коэффициент пропорциональности между током базы и током коллектора называется коэффициент усиления транзистора по току в схеме с общим эмиттером hFE:

Формула

Еще hFE часто обозначается как β или в советской литературе как h21э.

Важным преимуществом схемы является возможность использования только одного источника питания. Кроме этого, при проектировании схем важно учитывать то, что выходное напряжение инвертируется относительно входного.

Схема с общей базой

Значительно менее распространённое включение биполярного транзистора (рисунок BJT.4).

Обеспечивает усиление сигнала, но только по напряжению. Ток практически не изменяется или немного уменьшается. Ток в цепи коллектора связан с током эмиттера IE коэффициентом передачи ток α близким к единице, но меньшим её:

Формула Формула

Коэффициент передачи тока рассчитывается исходя из соотношения:

Формула

1

где hFE – все тот же коэффициент усиления транзистора по току в схеме с общим эмиттером.

Фактически силовой ток течет по цепи коллектор-эмиттер, то есть ток нагрузки полностью втекает в управляющий источник E. Это определяет малое входное сопротивление схемы Rin, фактически равное дифференциального сопротивления эмиттерного перехода

Формула

VBE – напряжение база-эмиттер

Соответственно ток базы мал и равен:

Формула

Эмиттерный повторитель

Эмиттерный повторитель потому и называется повторителем, что он не усиливает входной сигнал по напряжению, а «повторяет» его. Или почти повторяет. В схеме сопротивление нагрузки включено так, что напряжение не нем вычитается из приложенного напряжения, чем реализуется отрицательная обратная связь. Схема включения биполярного транзистора в режиме эмиттерного повторителя представлена на рисунке BJT.5.

Усиление достигается только по току:

Формула

Соответственно входное сопротивление повторителя равно:

Формула Формула

hFE — коэффициент усиления транзистора по току в схеме с общим эмиттером;

Rload – сопротивление нагрузки.

В реальности выходное напряжение отстает от входного на величину падения напряжения на переходе «база-эмиттер» (приблизительно равное 0,6 В):

Формула

Вольт-амперная характеристика биполярного транзистора

Форма вольт-амперных характеристик биполярного транзистора, включенного по схеме с общим эмиттером представлена на рисунке BJT.6. Поскольку в схемах включения транзистора присутствуют две цепи (два контура) – цепь управления и цепь нагрузки то имеют место две характеристики — входная и выходная. Входная характеристика (рисунок BJT.6, а) представляет собой зависимость тока базы от напряжения на переходе «база-эмиттер» при различных напряжениях «коллектор-эмиттер». При увеличении напряжения «коллектор-эмиттер» характеристика смещается вправо – ток базы уменьшается при том же значении напряжения «база-эмиттер». Выходная характеристика представляет собой зависимость тока коллектора от напряжения «коллектор-эмиттер» при различных токах базы, что образует семейство кривых. С ростом тока базы возрастает и ток коллектора пропорционально значению hFE (справедливо для малых сигналов). При постоянном токе базы ток коллектора несколько возрастает при увеличении напряжения «коллектор-эмиттер» (рисунок BJT.6, б).

Форма вольт-амперных характеристик биполярного транзистора

Основные параметры биполярного транзистора
  1. Максимальное напряжение коллектор-эмиттер (Collector-Emitter Voltage) VCEO – максимально допустимое напряжение между коллектором и эмиттером транзистора. Один из наиболее важных параметров транзистора.
  2. Максимальное напряжение коллектор-база (Collector-Base Voltage) VCBO – максимально допустимое напряжение между коллектором и базой транзистора. Это напряжение несколько выше (на 20-30%) чем максимальное напряжение коллектор-эмиттер.
  3. Максимальный постоянный ток коллектора (Collector Current — Continuous) IC – максимальная величина тока через коллекторный переход в стационарном режиме.
  4. Максимальное обратное напряжение эмиттер-база (Emitter-Base Voltage) VEBO — максимально допустимое напряжение между управляющего перехода база-эмиттер транзистора.
  5. Ток утечки коллекторного перехода (Collector Cut-Off Current) ICEX – ток, протекающий через закрытый коллекторный переход под действием приложенного обратного напряжения.
  6. Ток утечки эмиттерного перехода (Base Cut-Off Current) IBL – ток, протекающий через эмиттерный переход под действием приложенного обратного напряжения. При этом к коллекторному переходу также приложено напряжение.
  7. Коэффициент передачи тока (DC Current Gain) hFE – усилительная характеристика транзистора. Коэффициент равен отношению следствия — тока коллекторного перехода к причине — току эмиттерного перехода.
  8. Напряжение насыщения между коллектором и эмиттером (Collector-Emitter Saturation Voltage) VCE(sat) — минимальное напряжение между коллектором и эмиттером в открытом состоянии (в «совсем открытом» состоянии при большом токе базы). Обычно составляет 0,2-0,4 В.
  9. Напряжение насыщения эмиттерного перехода (Base-Emitter Saturation Voltage) VBE(sat) – напряжение между базой и эмиттером при заданном токе базы.
  10. Максимальная частота работы транзистора (Current Gain — Bandwidth Product) fT – при этой частоте транзистор уже не усиливает сигнал, и коэффициент передачи тока становится равным единице.
  11. Выходная емкость, емкость коллектор-база (Output Capacitance, Collector-Base Capacitance) CCBO – емкость коллекторного перехода.
  12. Входная емкость, емкость эмиттер-база (Input Capacitance, Emitter-Base Capacitance) CEBO – емкость эмиттерного перехода.
  13. Уровень шумов (Noise Figure) NF — уровень собственных шумов транзистора.
  14. Время задержки включения (Delay Time) td — время задержки начала переходных процессов в выходной цепи транзистора при включении.
  15. Время задержки выключения (Storage Time) ts — время задержки начала переходных процессов в выходной цепи транзистора при выключении.
  16. Время включения (Rise Time) tr — время переходных процессов в выходной цепи транзистора при включении (время нарастания тока). Указывается при конкретных условиях коммутации.
  17. Время включения (Fall Time) tf — время переходных процессов в выходной цепи транзистора при включении (время спада тока). Указывается при конкретных условиях коммутации.
  18. Максимально выводимая тепловая мощность (Total Device Dissipation) PD – максимальное количество энергии, которую можно отвести от транзистора, выполненного в том или ином корпусе.
  19. Тепловое сопротивление кристалл-корпус (Thermal Resistance, Junction to Case) RθJC – тепловое сопротивление между полупроводниковым кристаллом транзистора и его корпусом.
  20. Тепловое сопротивление кристалл-воздух (Thermal Resistance, Junction to Case) RθJA – тепловое сопротивление между полупроводниковым кристаллом транзистора и воздушной средой при условии свободной конвекции.
  21. Время включения, время выключения, времена задержки включения выключения – описывают динамические свойства транзистора при тех или иных конкретных условиях.
Комплементарность транзисторов

В ряде типовых схемотехнических решений необходимо одновременное использование транзисторов n-p-n и p-n-p структуры имеющих практически идентичные параметры. Такие транзисторы называют комплементарными. Ниже приведена таблица наиболее широко используемых пар комплементарных транзисторов.

Таблица BJT.1 — Некоторые комплементарные пары биполярных транзисторов

n-p-n p-n-p
КТ3102 КТ3107
2N3904 2N3906
BC237 (238,239) BC307 (308,309)
2N4401 2N4403
2N2222A 2N2907 (* почти)
2N6016 2N6015
2N6014 2N6013
BC556
(557, 558, 559, 560)
BC546
(547,548, 549, 550)

Поиск пар комплементарных транзисторов можно осуществлять на ресурсе [http://www.semicon-data.com/transistor/tc/2n/tc_2n_208.html].

Измерение коэффициента усиления по току

Транзисторы в пределах каждого конкретного типа имеют значительный разброс по коэффициенту усиления тока. В случае необходимости точного измерения коэффициента усиления по току использую тестеры с опцией измерения hFE.

Составной транзистор

Для увеличения коэффициента усиления используется схема включения двух и более биполярных транзисторов. Существует две разновидности схем составных транзисторов: схема Дарлингтона и схема Шиклаи (рисунок BJT.7). Каждая из представленных схем включает управляющий транзистор и силовой, через который протекает основная доля тока нагрузки.

В схемы может быть введен дополнительный резистор для изменения рабочих характеристик составного транзистора и улучшения динамических свойств схемы.

Функционально в схеме Дарлингтона резистор обеспечивает протекание постоянного тока через эмиттер управляющего транзистора, поскольку напряжение база-эмиттер силового транзистора слабо зависит от тока базы.

Ниже представлены расчеты коэффициента передачи тока составного транзистора для схем Дарлингтона и Шиклаи.

Расчет схемы Дарлингтона

Формула

  1. Выбираем ток коллектора силового транзистора IC2 и соответственно этому выбираем его конкретный тип;
  2. Определяем по справочному листу коэффициент передачи тока hFE2 выбранного силового транзистора в соответствии с выбранным током коллектора;
  3. В соответствии с током коллектора IC2 и коэффициентом передачи тока силового транзистора hFE2 определяем рабочий ток базы силового транзистора IB2:
  4. В соответствии с рабочим током базы силового транзистора IB2 по справочному листу определяем напряжение насыщения база-эмиттер VBE2.
  5. Рассчитываем интегральный коэффициент передачи тока составного силового транзистора Дарлингтона IC2/IB1.

Выведем выражение для расчета:

Сопротивление резистора следует из выражения:

Формула

Ток эмиттера первого транзистора:

Формула

Формула

Проводим ряд преобразований:

Формула Формула Формула Формула Формула Формула Формула

hFE1 — коэффициент передачи тока первого транзистора;

hFE2 — коэффициент передачи тока силового (второго) транзистора;

VBE2 — напряжение насыщения база-эмиттер транзистора;

R – сопротивление резистора;

IC2 – ток коллектора второго транзистора (выходной ток составного транзистора);

IB1 – ток базы первого транзистора (входной ток составного транзистора).

Полученное соотношение определяет коэффициент передачи тока составного силового транзистора Дарлингтона. При больших значениях сопротивления R (или при его отсутствии в схеме) выражение упрощается:

Формула

Из выражения видно, что в коэффициент передачи тока составного транзистора фактически равен произведению коэффициентов передачи тока дискретных транзисторов его составляющих.

Расчет схемы Шиклаи

Формула

  1. Выбираем ток коллектора силового транзистора IC2 и соответственно этому выбираем его конкретный тип.
  2. В соответствии с током коллектора IC2 и коэффициентом передачи тока выбранного силового транзистора hFE2 определяем рабочий ток базы силового транзистора IB2:
  3. В соответствии с рабочим током базы силового транзистора IB2 по справочному листу определяем напряжение насыщения база-эмиттер VBE2.
  4. Рассчитываем интегральный коэффициент передачи тока составного силового транзистора Дарлингтона IC2/IB1.

Выведем выражение для расчета:

Сопротивление резистора следует из выражения:

Формула

Ток коллектора первого транзистора:

Формула

Формула Формула Формула Формула Формула Формула

hFE1 — коэффициент передачи тока первого транзистора;

hFE2 — коэффициент передачи тока силового (второго) транзистора;

VBE2 — напряжение насыщения база-эмиттер транзистора;

R – сопротивление резистора;

IC2 – ток коллектора второго транзистора (выходной ток составного транзистора);

IB1 – ток базы первого транзистора (входной ток составного транзистора).

Полученное соотношение определяет коэффициент передачи тока составного силового транзистора Шиклаи. При больших значениях сопротивления R (или при его отсутствии в схеме) выражение упрощается:

Формула

Из выражения видно, что в коэффициент передачи тока составного транзистора равен произведению коэффициентов передачи тока дискретных транзисторов его составляющих.

Функционально в схеме Шиклаи резистор обеспечивает протекание постоянного тока через коллектор управляющего транзистора, поскольку напряжение база-эмиттер силового p-n-p транзистора слабо зависит от тока базы.

Транзисторы BJT: Введение в проектирование легкого электронного оборудования

Транзисторы BJT-Изучение истории электроники покажет, что изобретение транзисторов имело решающее значение для человечества. Транзисторы пришли на смену громоздким, энергоемким и низкоэффективным вакуумным лампам.

В настоящее время мы используем транзисторы либо для усиления, либо для переключения в электронных схемах.

Ознакомьтесь с этой статьей, чтобы узнать больше о транзисторах с биполярным переходом, их конфигурации и применении.

Транзисторы BJT: Что такое BJT-транзистор?

Транзисторы BJT 1

Рис. 1: Силовой транзистор NPN

Транзистор с биполярным переходом (BJT) — это полупроводниковый прибор с управляемым током, состоящий из двух n-p-переходов.

Он имеет три вывода: база, эмиттер и коллектор. В зависимости от расположения n-p-перехода, BJT использует либо дырки, либо электроны в качестве первичных носителей заряда.

При подаче сигнала на базовый вывод происходит усиление сигнала на коллекторном выводе транзистора. Однако для усиления сигнала требуется постоянное напряжение.

Конфигурация BJT-транзисторов

Транзисторы BJT 2

Рис. 2: Электронные компоненты на печатной плате

BJT — это трехконтактный переключающий или усилительный прибор, имеющий решающее значение в электронных схемах. В зависимости от первичного носителя заряда можно разработать две конфигурации транзистора с биполярным переходом.

Поэтому в транзисторах с биполярным переходом мы имеем два входа, но невозможно иметь два выхода, так как это трехконтактный прибор.

Один из выводов является общим как для входа, так и для выхода для преодоления дополнительной выходной клеммы.

Ниже приведены три возможные конфигурации BJT.

Транзисторы BJT: Конфигурация с общим эмиттером

Здесь мы подаем входной сигнал между переходом база-эмиттер и выходом перехода коллектор-эмиттер. Таким образом, эмиттер инвертирует входной сигнал.

Транзисторы BJT: Конфигурация с общим коллектором

В этой конфигурации входной сигнал подается между переходом база-коллектор, а выходной снимается с угла коллектор-эмиттер.

Конфигурация с общей базой

Конфигурация с общей базой использует базовый вывод как для входного, так и для выходного сигнала. Стандартная базовая конфигурация имеет только усиление по напряжению, но не имеет усиления по току.

Транзисторы BJT: Характеристики BJT

Транзисторы BJT 3

Рис. 3: Принципиальная схема с транзисторами

Три конфигурации BJT приводят к различным схемам с разными характеристиками. Наиболее важные характеристики включают входной и выходной импедансы, усиление по току и напряжению.

Характеристики Общая база Общий эмиттер Общий коллектор
Коэффициент усиления мощности Низкий Очень высокий Средний
Усиление тока Низкий Средний Высокий
Коэффициент усиления по напряжению Высокий Средний Низкий
Фазовый угол 180°
Выходной импеданс Очень высокий Высокий Низкий
Входной импеданс Низкий Средний Высокий

Стандартная эмиттерная конфигурация является наиболее распространенной конфигурацией BJT. Поэтому его хорошие показатели мощности, напряжения и тока улучшают усиление схемы.

Типы BJT-транзисторов

Рис. 4: Техник проверяет электронную печатную плату

Транзисторы с биполярным переходом классифицируются в соответствии с ведущими носителями заряда в их структуре. В результате мы имеем

PNP BJTs — транзисторы с дырками в качестве основных носителей заряда

NPN BJTs — транзисторы, в которых в качестве основных носителей заряда используются электроны.

NPN-транзисторы более популярны, чем PNP-транзисторы, поскольку они обеспечивают лучшее усиление. В структуре транзисторов NPN больше электронов, и электроны обладают большей подвижностью, чем дырки.

Транзисторы BJT: Транзисторы с биполярным переходом PNP

Транзистор PNP представляет собой биполярное переходное транзистор, который включает в себя легирование материала N-типа между двумя полупроводниковыми материалами P-типа. Эмиттер поставляет положительные носители заряда в транзисторах PNP, которые проходят через основание и на коллектор.

Таким образом, база контролирует количество носителей заряда, которые передают излучателя к коллекционеру.

NPN Биполярные переходные транзисторы

Транзистор NPN представляет собой биполярное переходное транзистор, который включает в себя легирование полупроводникового материала P-типа между двумя материалами N-типа. В этом случае большинство носителей заряда являются свободными электронами.

Отрицательные носители заряда перемещаются от валентности к полосам проводимости, когда они достаточно возбуждены. Следовательно, через полупроводниковую область N-типа будет некоторый ток.

Транзисторы BJT: Рабочая зона транзистора BJT

Рис. 5: Электронная плата

Транзисторы технически действуют как переключатели или устройства усиления в электронных схемах. Биполярные переходные транзисторы представляют собой трехконтактные активные устройства, которые могут либо проводить, либо не в зависимости от смещения затвора.

Поэтому давайте посмотрим на рабочие зоны BJT

Активный регион

Здесь транзистор работает как усилитель.

IC = .ib

является соотношением коллекционеров и базовых токов и обеспечивает прирост тока для общего эмиттерского транзистора.

Область насыщения

Транзистор полностью включен, а его соединительные соединения базовой и базовой эмиттер находятся в режиме смещения пересылки.

IC = I (насыщение)

Регион отсечения

Здесь транзистор полностью выключен, а его базовое напряжение меньше, чем как коллекционеры, так и эмиттерных напряжений.

IC = 0

Transistors BJT: применение BJTS

Во -первых, биполярные переходные транзисторы функционируют как демодуляторы или детекторы

Во -вторых, используется в схемах усилителей в качестве усилителей или используется в качестве модуляторов

Кроме того, они управляют генераторами и мультивибраторами

Транзисторы BJT-Кроме того, они являются критическими схемами обрезки для волны

Кроме того, BJT также имеют решающее значение в схемах задержки по времени

Наконец, BJTS работает в электронных цепях переключения

Вывод

Биполярные переходные транзисторы являются критическими электронными компонентами, которые требуют глубокого понимания цепи. В результате вы, возможно, видели их, но не поняли, как они работают.

Мы надеемся, что эта статья прояснила некоторую загадку вокруг BJTS и открыла двери, чтобы вы могли продолжить ваш проект.

Для получения дополнительной информации, разъяснения или помощи в области электроники обратитесь к нашим экспертам.

Hommer Zhao

Привет, я Хоммер, основатель WellPCB. На сегодняшний день у нас более 4000 клиентов по всему миру. Если у вас возникнут какие-либо вопросы, вы можете связаться со мной. Заранее спасибо.

Транзисторы биполярные (BJTs)

Транзисторы биполярные – трёхэлектродные полупроводниковые приборы, у которых электроды подключаются к последовательно расположенным слоям полупроводников с чередующейся примесной проводимостью.

В зависимости от способа чередования бывают p-n-p и n-p-n биполярные транзисторы.

В отличие от полевых транзисторов, работа биполярных основывается на переносе электрического заряда двух типов, носители которых – дырки и электроны.

Электроды, подключаемые к среднему слою, называются базой, а электроды, подключаемые к внешним слоям – коллектором и эмиттером (эти слои различаются степенью легирования примесями).

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Астрахань, Барнаул, Белгород, Брянск, Владимир, Волгоград, Вологда, Воронеж, Екатеринбург, Иваново, Ижевск, Иркутск, Йошкар‑Ола, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курган, Курск, Липецк, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Оренбург, Пенза, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Сургут, Тамбов, Тверь, Томск, Тула, Тюмень, Ульяновск, Уфа, Хабаровск, Чебоксары, Челябинск, Ярославль.
Доставка в пункты выдачи заказов Яндекс Доставка, СДЭК, Л-Пост, Boxberry, 5Post, транспортными компаниями DPD и «Деловые Линии», а также Почтой России в Тольятти, Владивосток, Махачкала, Новокузнецк, Калининград, Улан-Удэ, Сочи, Нижний Тагил, Чита, Владикавказ, Грозный, Мурманск, Петрозаводск, Нижневартовск, Новороссийск и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Транзисторы биполярные (BJTs)» вы можете купить оптом и в розницу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *