Тугоплавкий припой как паять
Перейти к содержимому

Тугоплавкий припой как паять

  • автор:

Виды и температуры плавления легко- и тугоплавких припоев

Что такое припой

Чтобы соединить вместе металлические детали, нередко используют пайку. Этот вид коммутации применяется в разных областях быта и производства. Зачастую работа осуществляется домашними мастерами или радиолюбителями. Метод актуален при ремонте компьютеров, телевизоров и даже холодильников. Для получения качественного и герметичного стыка требуются навыки работы, легко- и тугоплавкие припои, флюсы. Их выбор зависит от материала обрабатываемых элементов.

Основные свойства

В качестве материалов для пайки используются разнообразные металлические сплавы. Однако существуют составы, полностью состоящие из металла. Чтобы соединения были качественными, припой должен обладать некоторыми свойствами.

Припой это

Любые материалы должны обладать высокими показателями смачиваемости — явление, при котором прочность связи между твердыми и жидкими веществами выше, чем у жидкости. При высоких значениях жидкость распространяется по поверхности, заполняя мельчайшие полости. В случае если припой недостаточно смачивает металл, его нельзя использовать для пайки. Например, свинец не применяется для работы с медью, иначе получится низкокачественное соединение.

Какой бы ни использовался припой, температура плавления у него должно быть меньше, чем у соединяемых элементов, но больше рабочих температур металла. Это необходимо для того, чтобы последний во время пайки не расплавился.

Существуют два предела температуры. Первый — тот, при котором в процессе пайки начнут плавиться самые легкоплавкие элементы, второй — когда весь припой станет жидким. Промежуток между этими показателями по-научному называется интервалом кристаллизации.

Если место коммутации находится в таком температурном диапазоне, пайка может быстро разрушиться даже от минимальной нагрузки. Это обусловлено тем, что соединение имеет высокое сопротивление и хрупкость. Следует отметить: пока припой полностью не застыл, нельзя оказывать на него никакого воздействия.

Используемые материалы

Зачастую для пайки применяется олово с добавлением других компонентов. В состав припоя могут входить различные материалы. Например:

  • Припой оловоОлово. Является мягким материалом, плавление которого происходит при +231,9 °С. Металл подвергается растворению в соляной и серной кислоте. Большинство органических кислот не оказывает на него действия. При комнатных температурах не окисляется, но при показателях ниже + 18 °C (особенно меньше -50 °С) разрушается кристаллическая решетка, вследствие чего цвет меняется на серый.
  • Свинец. Очень часто используется в припоях, что обусловлено его легкоплавкостью. Чистый металл без посторонних примесей мягкий, с ним легко работать. Окисление происходит только на наружной части, которая вступает во взаимодействие с воздухом. Легко растворим в кислотной и щелочной среде, содержащей органические вещества и азот.
  • Кадмий. Популярен при производстве легкоплавких припоев в небольших количествах вместе со свинцом или висмутом. Металл в чистом виде токсичен, плавится при + 321 °C. Нередко его используют для предотвращения коррозии.
  • Припой медьВисмут. Один из наиболее легкоплавких материалов, плавится при показателях в +271 °C, растворяется в азотной и подогретой серной кислоте.
  • Сурьма. Тугоплавкий материал, плавление начинается при +630,5 градусов. Не окисляется под действием кислорода. Очень токсичен, придает припою глянец.
  • Цинк. Хрупкий серо-синий металл, плавление достигается при +419 °С. Окисление происходит при контакте с кислородом. Применяется для припоев, использование которых осуществляется в условиях повышенной влажности, защищает место пайки окисной пленкой, легко растворяется в кислотах.
  • Медь. Ее наивысшая температура плавления — +1083 градуса. Не вступает во взаимодействие с воздухом, но во влажной среде окисляется ее верхний слой. Зачастую применяется при производстве тугоплавких припоев.

Разновидности припоя

Все виды припоев подразделяются на туго- и легкоплавкие. Последние востребованы при производстве радиоаппаратуры, пайке электронных элементов, а также для лужения радиомонтажных плат. Плавление осуществляется при температурах не больше +450 градусов. В основе таких материалов имеется цинк, свинец, олово и т. д.

В радиоэлектронике популярность приобрели изделия, которые плавятся при показателях менее +145 градусов. Для лужения плат нередко используют сплав Вуда или Розе. Работа с ними осуществляется при 70−95 градусах, они равномерно распространяются на плате, опущенной в кипяток.

Температура плавления припоя

В промышленных масштабах востребован ПОС — припой оловянно-свинцовый. Если в составе есть висмут или кадмий, в названии присутствуют буквы В или К. Цифра в конце маркировки указывает на долю олова по отношению к свинцу — чем меньше это значение, тем прочнее припой. Маркировка с буквой Ф свидетельствует о присутствии флюса в составе. Последние годы ввиду стандартов экологии в Европе чаще стали использовать материалы без свинца в составе.

Наиболее распространенные отечественные изделия и область их применения:

Что такое припой для пайки

  • ПОС-18 — часто применяется для лужения.
  • ПОС-30 — пайка стали, а также меди и их сплавов.
  • ПОС-50 — изготовление качественной пайки в радиоэлектронике.
  • ПОС-90 — лужение деталей перед предстоящим золочением или серебрением. Не используют для обработки установок, которые функционируют на повышенных температурах.
  • ПОС-40 и ПОС-60 — наиболее востребованы в радиоэлектронике. Для коммутации латуни и экранированных пластин используется материал с маркировкой 30. Изделия с содержанием флюса применяют для монтажа радиодеталей и производятся в виде проволоки толщиной 1−3 мм.

Припой для пайки

С тугоплавкими припоями в основном работают в промышленных масштабах для соединения твердых металлов. Температура плавления — от +450 до +800 градусов. В составе присутствует магний, медь серебро и никель. Эти припои отличаются высокой прочностью, но ввиду высоких показателей не применяются в бытовых условиях. Форма выпуска — слитки различных форм.

При изготовлении припоев особое значение имеют тугоплавкие изделия, в составе которых присутствует медь и серебро. Заводская маркировка — ПСР.

Флюсы и их применение

От правильно подобранного флюса напрямую зависит качество и прочность пайки, аккуратность и ровность шва. При нагреве должна образоваться тонкая пленка между материалами и припоем, усиливающая адгезию последнего с металлом. Чем ниже показатели плавления флюса, тем выше качество работы. Кроме того, эти значения должны быть ниже, чем у припоя. Сегодня производится два типа материалов:

Активные флюсы

  • Активные. В их составе часто присутствуют кислоты (соляная, ортофосфорная). Они хорошо воздействуют на жирный налет, но плохая промывка места коммутации со временем приводит к коррозии. Препараты в быту стараются применять редко, особенно это касается радиоэлектроники. Это обусловлено тем, что они разрушают текстолит, а также при попадании на кожные покровы вызывают ожоги. Кроме того, пары, выделяемые в процессе работы, оказывают токсичное влияние на человека. Наиболее востребованные флюсы — нашатырь, ортофосфорная кислота и бура.
  • Пассивные флюсы способствуют удалению отложений жира. Яркими представителями являются воск и канифоль. Это органические вещества, не вызывающие коррозии, необходимы для пайки радиокомпонентов. Последнее время стало востребованным использование материалов с маркировкой ЛТИ для коммутации с легкоплавкими припоями. Кроме того, можно проводить пайку свинца, железа, нержавейки и оцинкованных металлов. В составе присутствуют спирт, канифоль и пр. Минус: под воздействием температур пары выделяют вредные для здоровья вещества. Единственное исключение — препарат ЛТИ-120, в составе которого отсутствуют опасные элементы.

Пассивные флюсы

Существует множество различных видов флюсов. Наиболее востребованные из них:

  • Сосновая канифольСосновая канифоль. Самый простой и доступный вид. Имеет низкие показатели утечки тока, относится к пассивным типам. Ввиду своей популярности доступна в продаже. Используется в широком спектре работ, растворяется в смеси спирта и глицерина.
  • Ортофосфорная кислота. Представляет собой химически активное соединение. Используется при работе с окисленными металлами, никелированной сталью. По окончании работ обязательно нужно очистить место спайки содовым раствором. Это необходимо для погашения кислотной активности и предотвращения разъедания металла.
  • Паяльная кислота. Нужна для спайки никеля, углеродистой стали, меди и латуни.
  • Паяльный жир. Он бывает активным и нейтральным, используется для окисленных элементов черных и цветных металлов. Нейтральный допустимо применять для работы с радиодеталями, активный — нет.
  • Паяльный жирБура. Пригодна для пайки стали, меди и чугуна при высоких температурах.
  • ТАГС. Изготовлен на основе глицерина, применяется для радиомонтажа, по окончании работы необходимо обработать места спиртом.
  • Флюсы ЗИЛ. Предназначены для работы со сталью, латунью, медью.
  • Активные флюсы ФИМ. Подходят для работы с окисленной платиной или серебром. В составе присутствует фосфорная кислота, поэтому необходима промывка содовым раствором.
  • ФТС. Препарат, в составе которого отсутствует канифоль. Используется для спайки радиодеталей без дыма.
  • Паста «Тиноль» — химическое изделие, предназначенное для пайки термофеном.

Типы паяльников

Паяльник — инструмент, который используется при пайке и лужении, для нагрева флюса и элементов, расплавления припоя и т. д. Рабочую деталь прибора называют жалом, нагрев происходит от паяльной лампы или электрического тока.

Типы паяльников

Обычно мощность электрического таких инструментов составляет 30−40 Вт, они предназначены для ремонта и установки электронных устройств. Но в работе с полупроводниковой аппаратурой это изделие может вызвать недопустимый перегрев. Для предотвращения таких ситуаций целесообразно приобрести маломощный агрегат с показателями не более 15 В. Паяльники бывают как с периодическим, так и постоянным нагревом. Последние подразделяются:

Газовые паяльники

  • Электрические. Имеют встроенный нагревательный элемент, который работает от розетки, аккумулятора или трансформатора.
  • Газовые. Оснащены встроенной горелкой, топливо подается обычно из баллона со сжиженным материалом. Внешний источник используется редко.
  • Жидкотопливные. По конструкции они похожи на газовые, но нагрев производится от пламени сгорания жидкого топлива.
  • Термовоздушные. Работа осуществляется благодаря струе горячего воздуха. Принцип действия напоминает строительный фен, но в этом случае используется тонкая воздушная струя.
  • Инфракрасные. Нагреваются от источника ИК-излучения.

Термовоздушные паяльники

Устройства с периодическим нагревом бывают молотковыми и торцевыми. Представлены они в виде массивного наконечника, крепящегося на металлическую ручку, длина которой обеспечивает безопасность работ. Нагрев осуществляется от внешних теплоисточников.

Кроме того, еще одним вариантом являются дуговые агрегаты. Они нагреваются при помощи электрической дуги, периодически возбуждаемой между наконечником и угольным электродом.

Существуют различные виды припоев и флюсов, которые подходят для работы с конкретными металлами. Разобравшись в особенностях препаратов, выбор нужного материала не займет много времени и не вызовет трудностей.

Пайка твердыми припоями

Разделение пайки на низкотемпературную и высокотемпературную носит, в некоторой степени, условный характер. По своей физической природе пайка твердыми припоями не отличается от пайки мягкими. Как и последняя она представляет собой процесс образования неразъемного соединения двух металлов с помощью третьего (называемого припоем), температура плавления которого ниже температуры плавления соединяемых металлов.

Пайка твердыми припоями

Пайка твердыми припоями

И все же, несмотря на то, что низкотемпературная и высокотемпературная пайки представляют собой явления одной сущности, их технология, используемые материалы и оборудование, характеристики получаемого соединения существенно различаются. Что, собственно, и явилось основанием для разделения этих способов. За граничную температуру, разделяющую их, приняты 450°C.

Отличия высокотемпературной пайки от низкотемпературной

Что отличает высокотемпературную пайку от низкотемпературной, кроме температуры плавления припоев? Прежде всего — значительно более высокая прочность паяного соединения, обусловленная большей прочностью твердых припоев в сравнении с мягкими.

Спаянная рама велосипеда

Спаянная рама велосипеда

Важным отличием высокотемпературной пайки от низкотемпературной является повышенная термоустойчивость соединения. Поскольку температура плавления твердых припоев значительно выше температуры плавления мягких, соединение, выполненное высокотемпературной пайкой, способно работать при более высоких температурах, сохраняя все свои свойства. Во многих случаях при выборе способа пайки, эта особенность является определяющей.

Но есть и то, в чем пайка твердыми припоями уступает пайке мягкими припоями. Относительно высокая температура может вызывать структурные изменения в некоторых металлах. Такое, в частности, наблюдается в чугуне, в котором при пайке могут возникать закалочные структуры, приводящие к повышенной хрупкости металла в зоне шва.

Высокая температура плавления твердых припоев предъявляет свои требования к источникам нагрева. Они должны обеспечивать расплавление припоев, температура плавления которых достигает иногда 1000°C. Это исключает использование при высокотемпературной пайке удобных паяльников, являющихся основным инструментом при пайке мягкими припоями.

Резюмируя вышесказанное, можно подвести итог сравнения высокотемпературной и низкотемпературной паек. К достоинствам первой относится высокая прочность и термоустойчивость соединения, к недостаткам — сложность технологического процесса, обусловленная необходимостью прогрева паяемых деталей до относительно высоких температур.

Применение пайки твердыми припоями

Область применения пайки твердыми припоями определяется ее промежуточным положением между низкотемпературной пайкой и сваркой. Везде, где требуется получить более прочное соединение, чем это можно сделать с использованием мягких припоев, способное к тому же работать в условиях высоких температур, и в то же время сохранить структуру соединяемых металлов, не допустить их разупрочнения и деформации (как это имеет место при сварке), применяют высокотемпературную пайку.

Пайка твердыми припоями является основным способом при изготовлении металлорежущего инструмента с твердосплавными пластинами. Припаивание последних обеспечивает достаточную прочность соединения и не оказывает отрицательного воздействия на твердость и геометрию режущих пластин.

Резцы

Резцы

Изготовление всевозможных сосудов из цветных металлов и нержавеющих сталей, соединение стальных и медных трубопроводов, работающих под высоким давлением или повышенной температуре в различных системах — холодильных, теплообменных и пр. — также не может обойтись без пайки твердыми припоями.

Широко используется высокотемпературная пайка при ремонте автомобилей — радиаторов, трубопроводных систем двигателя и трансмиссии, кузовов, различных деталей — везде, где нельзя или нежелательно применять сварку.

Целесообразно использование высокотемпературной пайки для соединения между собой тонкостенных деталей, работающих при значительных нагрузках и упругих деформациях.

Для ремонта медных и латунных бытовых изделий, подвергающихся в процессе эксплуатации высоким температурам, высокотемпературная пайка является способом ремонта не имеющим альтернативы. Таких, например, как старинный самовар, растапливаемый дровами. В этом случае мягкие припои не могут применяться из-за неспособности выдерживать высокую температуру нагрева.

Источники нагрева при высокотемпературной пайке

В качестве источников нагрева при высокотемпературной пайке может использоваться любое оборудование, которое позволяет нагревать паяемые детали несколько выше температуры плавления используемых припоев. Эта температура может колебаться в пределах 450-1200°C. При использовании тугоплавких материалов, таких как латунь или технически чистая медь, требуется нагрев, превышающий 1000°C, при использовании среднеплавких припоев требуется температура нагрева в 700-800°C.

Основными источниками нагрева при высокотемпературной пайке являются газовые горелки различных типов, индукторы и печи. Применяется также нагрев электросопротивлением. В быту чаще всего твердыми припоями паяют с помощью горелок.

Припои

Основная заслуга в образовании прочных и термоустойчивых соединений при высокотемпературной пайке принадлежит меди. Она не только входит практически во все твердые припои, но в большинстве из них выполняет главную роль, являясь основой припоев.

Иногда используют в качестве припоя и технически чистую медь. Однако гораздо чаще используют пайку медными припоями, представляющими собой соединения меди с другими металлами — цинком, серебром, кремнием, оловом и пр. Каждый из этих элементов вносит свою лепту в технологические свойства припоев. Почти все они снижают температуру плавления (у чистой меди она составляет 1083°C).

При высокотемпературной пайке используются медно-цинковые, медно-фосфорные, серебряные припои и латуни.

Твердый припой

Твердый припой

Твердый припой покрытый флюсом

Твердый припой покрытый флюсом

Медно-цинковые припои. Существует большое количество медно-цинковых припоев (ПМЦ-35, ПМЦ-39, ПМЦ-50, ПМЦ-54, ПМЦ-57 и пр.). Цифры указывают процентное содержание меди. Их используют для пайки бронзы, меди, стали. Недостатком чисто медно-цинковых материалов является плохая работа в условиях ударных, вибрационных и изгибающих нагрузок. Чтобы убрать или снизить этот недостаток используют легирование их другими металлами (например, латуни можно рассматривать как легированные медно-цинковые припои). Легированные медно-цинковые припои используются, в частности, при пайке твердосплавных резцов.

Медно-фосфорные припои. Медно-фосфорные припои (ПМФ-7, ПМФ-9, ПМФОЦр-6-4-0,03) представляют собой сплав меди с фосфором. Следующая за буквами цифра указывает на процентное содержание фосфора. Припой ПМФОЦр-6-4-0.03, кроме меди и фосфора, содержит олово и цирконий.

Медно-фосфорные припои относятся к среднеплавким (700-850°C), обладают высокой текучестью и хорошей коррозионной устойчивостью к агрессивным средам. Используются для пайки меди и ее сплавов (бронзы, латуни, мельхиора). Можно их использовать и в качестве заменителя серебряных припоев при ремонте ювелирных изделий.

Пайка сталей и чугуна медными припоями, содержащими фосфор, не применяется из-за повышенной хрупкости соединения и его неспособности переносить ударные, вибрационные и изгибающие нагрузки. Это вызвано образованием по границе шва пленки фосфитов.

Отличительную особенность медно-фосфорных припоев является то, что они являются самофлюсующимися. При пайке ими медных изделий, применение флюса не обязательно.

Латуни. Широкое распространение в качестве припоев получили латуни, которые являются сплавом меди с цинком. Латуни Л62 и ЛОК-62-06-04 дают прочные паяные соединения. ЛОК-62-06-04 отличается от Л62 наличием олова и кремния, обеспечивающих более высокие технологические свойства припоя. Олово увеличивает жидкотекучесть и снижает температуру плавления, а соединения кремния предохраняют цинк от окисления и испарения. Латуни применяются при пайке меди, стали, чугуна.

Серебряные припои. Серебро является отличным материалом для пайки. Серебряным припоям, которые представляют собой в основном сплав серебра с медью и цинком, принадлежит первое место по растеканию, смачиваемости, прочности и антикоррозионности. Не будь они такими дорогими, можно было бы отказаться от всех остальных припоев, используя только серебряные. Благо они обладают универсальностью и способны паять практически любой металл.

Припои на основе серебра обозначаются буквами ПСр (ПСр-15, ПСр-25, ПСр-45, ПСр-65, ПСр-70). Марки ПСр-15 и ПСр-25 используются для пайки не очень ответственных деталей. Если требуется получить особо качественное соединение, используют припой ПСр-45, имеющий 45% серебра, 30% меди и 25% цинка. ПСр-45 обладает отличными качествами — вязкостью, ковкостью, жидкотекучестью, устойчивостью против коррозии, способностью выдерживать вибрацию и удары. Припой ПСр-65 не уступает ПСр-45, но слишком дорог.

Серебряными припоями можно паять практически любой металл — медь и ее сплавы, серебро, стали и пр. Однако в силу их дороговизны пайку серебряными припоями применяют только там, где это экономически целесообразно, в частности, для соединения нержавеющих сталей, относящихся к разряду труднопаяемых и требующих припоев, обладающих хорошей смачиваемостью и позволяющих избежать коррозии, которая может возникнуть в спае.

Флюсы

Основным компонентом флюсов для пайки твердыми припоями являются борные соединения — бура (Na2B4O7), борная кислота (H3BO3), борный ангидрид (B2O3). Для усиления активности борных флюсов, например при пайке нержавеющих и жаростойких сталей, в них добавляются соединения фтора — фтористый кальций, фтористый калий. Применяются специальные флюсы, регламентированные ГОСТ 23178-78 — под марками ПВ200, ПВ201, ПВ209, ПВ209Х, ПВ284Х. В первые два входят борная кислота, бура и фтористый кальций. Они используются для пайки нержавеющих и конструкционных сталей и жаропрочных сплавов. Флюс ПВ209 состоит из фтористого калия, борного ангидрида, калия тетрафторбората. Флюсы ПВ209Х, ПВ284Х состоят из борной кислоты, гидроксида калия, плавиковой кислоты. Флюсы ПВ209, ПВ209Х, ПВ284Х можно использовать для пайки меди и ее сплавов, нержавеющих и конструкционных сталей.

Пайка меди и ее сплавов может производиться с помощью чистой буры, которая является универсальным флюсом для высокотемпературной пайки.

Бура

Бура

Используются различные формы выпуска флюсов — жидкости, порошок, кусочки (кристаллы буры, например). Чтобы облегчить их дозирование (избыток флюса так же нежелателен, как и недостаток), используют объединение их с припоем. Делается это разными способами — добавлением в виде порошка в сыпучие формы припоев, обмазкой прутков припоя или помещением внутрь трубочки из припоя, совместным прессованием таблетированных форм.

Технология высокотемпературной пайки

В приведенном примере в качестве паяемых деталей выбраны части гаечного ключа. В качестве припоя — материал, представляющий собой пруток, покрытый флюсом. Необходим также высокоактивный флюс, подходящий для нержавеющих сталей. Инструментом нагрева является газовая горелка.

Горелка для пайки

Горелка для пайки

Пайка выполняется в такой последовательности. Механическим путем зачищаются стыковые части деталей. Операция необходима для удаления стойкой окисной пленки, которая покрывает нержавеющие стали.

Зачистка деталей пред пайкой

Зачистка деталей пред пайкой

Детали зажимаются в тисках в требуемом положении.

Фиксирование деталей

Фиксирование деталей

Зона пайки промазывается флюсом.

Нанесение флюса

Нанесение флюса

Зажигается горелка, и устанавливается необходимый режим горения. Пламя должно быть восстановительным, с небольшой нехваткой кислорода (но не до копоти и желтого огня). Пересыщенное кислородом пламя окисляет поверхность металла.

Производится разогрев паяемой зоны до начала изменения цвета детали (при прикосновении, флюс на прутке должен начать плавиться). Прогревать нужно все соединение, перемещая пламя в разные стороны.

Прогрев деталей

Прогрев деталей

Осуществляется офлюсовывание стыка флюсом с прутка — трением последнего по стыку. Если используется неофлюсованный пруток, после прогрева кончика, его нужно окунуть во флюс, чтобы тот покрыл его.

Нанесение флюса прутка припоя

Нанесение флюса прутка припоя

Нагрев зоны пайки доводится до вишневого цвета. Обычно пайка твердыми припоями производится в интервале цветов от темно-вишневого до светло-вишневого.

Нагрев деталей до более высокой температуры

Нагрев деталей до более высокой температуры

Расплавляется припой. При достаточном количестве флюса он легко растекается по зоне пайки, затягивается в стык.

Нанесение припоя

Нанесение припоя

Детали после пайки

Детали после пайки

Припой должен плавиться не от пламени горелки, а от теплоты прогретого соединения.

После окончания операции производится зачистка спая.

Очистка спаянного гаечного ключа

Очистка спаянного гаечного ключа

И вот результат — готовое изделие.

Гаечный ключ спаянный высокотемпературной пайкой

Гаечный ключ спаянный высокотемпературной пайкой

Гаечный ключ спаянный высокотемпературной пайкой

Гаечный ключ спаянный высокотемпературной пайкой

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Припои: особенности и разновидности

Припой является важным компонентом пайки. Это расходный материал, который соединяет между собой ножки радиодеталей и контакты дорожек на плате, скрепляет две металлические детали либо же заполняет прорехи в металле при реставрации эмалированной посуды. Соединение происходит благодаря затвердеванию припоя, который наносится между соединяемыми поверхностями в расплавленном виде — поэтому температура его плавления должна быть меньшей, чем температура плавления скрепляемых деталей.

В качестве припоя используются металлы или сплавы металлов, к которым могут добавляться примеси других металлов с целью изменения свойств. Например, температуры плавления, прочности, смачиваемости. Разумеется, процентное соотношение металлов также варьируется. Поэтому ассортимент припоя огромен.

Универсальных припоев не существует, ведь он должен иметь характеристики, соответствующие соединяемым деталям, а также отвечать требованиям эксплуатации.

Основными свойствами припоя считаются смачиваемость и температура плавления. От первого параметра зависит то, насколько хорошо жидкий припой будет растекаться по поверхности и заполнять все полости. Второй параметр влияет на температуру нагрева жала или потока горячего воздуха, а также на соединяемые элементы. Из-за этого припой должен иметь меньшую температуру плавления, чем спаиваемые детали, иначе они оплавятся и контакт ухудшится.

Температуру плавления припоя разделяют на два порога: нижний и верхний. Нижний порог температуры обозначает начало плавления легкоплавких компонентов припоя. Верхний порог указывает температуру, при которой весь припой переходит в жидкое состояние. Интервал между этими состояниями называют интервалом кристаллизации припоя. При нанесении припоя с температурой кристаллизации место пайки будет хрупким, а соединение может быстро разрушиться. Также следует знать, что до окончательного затвердевания припоя паянное соединение нельзя подвергать нагрузкам.

К другим физико-механическим свойствам припоев относят удельное электрическое сопротивление, сопротивление разрыву, плотность, теплопроводность, твёрдость.

Разновидности припоев

Существует большое разнообразие припоев. Оно определяется температурой плавления, наличием свинца, количеством компонентов, а также формой выпуска. Кроме того, припои отличаются составом.

Температура полного расплавления у каждого припоя своя, однако по данному параметру припои классифицируются на два типа: мягкие и твёрдые. К мягким (или легкоплавким) относят припои, температура плавления которых составляет не более 300°С. К твёрдым (или тугоплавким) — припои с температурой плавления от 300°-450°С. При этом эти две группы припоев отличаются свойствами. Так, предел прочности мягких припоев находится в пределах 16-100 МПа, тогда как у твёрдых он составляет 100-500 МПа.

В зависимости от наличия свинца припои делятся на свинцовые и бессвинцовые. Это вызвано тем, что свинец является токсическим веществом. Поэтому в последнее время они стали замещаться бессвинцовыми сплавами, которые менее опасны для человека.

Такой параметр, как количество компонентов редко встречается в классификации, поскольку большинство современных припоев состоят из двух или трёх металлов, но в качестве припоя может использоваться и одно олово. Хотя, из-за его дороговизны, одно олово, как правило, не применяется в роли припоя.

Форма выпуска припоев тоже может быть разной. Она отличается в зависимости от типа припоя. Так, мягкие или легкоплавкие изготавливают в виде проволоки разного диаметра (от 0,25 мм до 3 мм), намотанной на катушку или упакованной спиралью в колбе. Изредка могут поставляться в виде прутков. Существуют мягкие припои в виде шариков для поверхностного монтажа BGA компонентов с помощью бесконтактной пайки. Твёрдые или тугоплавкие припои также делают в виде катушек с намотанной проволокой. Некоторые разновидности твёрдых припоев производят в виде зёрен, полос или прутков.

Ещё одним параметром можно считать состав. Причём это касается не только основных компонентов, ведь в состав припоя в небольших количествах (десятые, сотые или даже тысячные части процентов — 0,002% или 0,1%) входят примеси. Например, в оловянно-свинцовых припоях могут присутствовать сурьма, висмут, мышьяк, железо, никель, цинк и другие химические вещества. Кроме этого, в состав припоя может входить флюс или канифоль (используется для очистки поверхностей от окислов и улучшения растекаемости припоя). Припои с флюсом в своём названии могут иметь приставку «flux» или букву «Ф» (если марка припоя указывается по советскому стандарту).

Легкоплавкие (мягкие) припои

Наиболее распространёнными припоями являются легкоплавкие, или мягкие. Как понятно из названия, они плавятся при относительно небольших температурах. К ним относят припои, верхний порог плавления которых составляет 300°С или 400°С (хотя некоторые виды легкоплавких припоев могут плавиться при температурах 180°-280°С, при этом бывают и низкотемпературные составы, которые расплавляются при температурах 60°-95°С). Такие припои удобны в работе, поскольку с ними можно работать паяльником. При этом, у мягких припоев есть недостаток — меньшая прочность (в сравнении с твёрдыми припоями). Из-за этих особенностей данный вид припоя применяется промышленностью для пайки изделий, деталей и устройств, которые в процессе эксплуатации не будут подвергаться воздействию высоких температур и большим механическим нагрузкам. Кроме того, такие припои распространены среди радиолюбителей — как при ремонте радиоэлектроники, так и при создании новых приборов.

Чаще всего такие припои являются сплавами олова и свинца в разных пропорциях (олово 40%, свинец 60%; олово 50%, свинец 50%; олово 60%, свинец 40%; олово 61%, свинец 39%; олово 63%, свинец 37%). Обозначаются маркой «ПОС» (припой оловянно-свинцовый).

Также существуют трёхкомпонентные оловянно-свинцовые припои. В их состав добавляют висмут или сурьму (олово 25%, свинец 25%, висмут 50% (сплав Розе); олово 33.4%, свинец 33.3%, висмут 33.3%; олово 40%, свинец 58%, сурьма 2%). Легкоплавкие припои с добавлением висмута обозначаются аббревиатурой «ПОСВ». Припои с добавлением сурьмы маркируются «ПОССу».

Впрочем, из-за токсичности свинца, начали выпускать бессвинцовые припои. И даже больше — в Европе и США в 2006 году была принята директива RoHS, запрещающая использование припоев с содержанием свинца при производстве электроники. Однако в сравнении с обычными, оловянно-свинцовыми припоями, бессвинцовые составы требуют соблюдения особенных технологических мер. Зато такие припои можно использовать для пайки медных труб в системах питьевого водоснабжения.

Основным компонентом таких припоев является олово (до 96-98% содержания), к которому добавляют медь, серебро, висмут, индий, цинк. Бессвинцовые припои бывают двух-, трёх- и даже четырёхкомпонентными. Наиболее распространёнными являются припои с следующим составом: олово 97%, медь 3%; олово 96,5%, серебро 3%, медь 0,5%; олово 95,5%, серебро 3,8%, медь 0,7%; олово 96,5%, серебро 3,5%; олово 98%, серебро 2%. По сравнению с оловянно-медными припоями лучшими качествами, как по смачиваемости, так и по прочности, обладают серебросодержащие.

Тугоплавкие (твёрдые) припои

Тугоплавкие, или твёрдые, припои являются паяльными расходными материалами, которые характеризуются высокой температурой плавления — от 450°С. Помимо высокотемпературной пайки, а соответственно, и необходимости использования особенного паяльного оборудования, такие припои отличаются от мягких повышенной прочностью. Пайка твёрдыми припоями применяется для соединения стальных и медных труб, радиаторов и кузовов в автомобилях (как альтернатива сварке), для пайки самоваров, ювелирных изделий.

Для пайки тугоплавкими припоями не подойдут паяльники для контактной пайки, ведь температура плавления таких припоев может достигать 1000°С, поэтому для такой пайки используют газовые горелки, индукторы и печи.

В качестве твёрдого припоя может использоваться технически чистая медь. Однако чаще встречаются припои из сплава меди с другими металлами — оловом, цинком, серебром. При этом большинство дополнительных компонентов снижают температуру плавления.

К высокотемпературным припоям относят медно-цинковые (ПМЦ), медно-фосфорные (ПМФ), медно-серебряные и серебряные (ПСР): медь 40-45%, цинк 53-58%, примеси до 2%; медь 45-49%, цинк 49-53%, примеси до 2%; серебро 10%, медь 52-54%, цинк 38%; серебро 45%, медь 20-30%, цинк 25-35%; серебро 25%, медь 39-41%, цинк 34-36%; серебро 70%, медь 25-26%, цинк 4-5%.

Из разнообразия твёрдоплавких припоев можно выделить серебрянные. Они способны спаять разные маталлы — медь, серебро, сталь.

Какой припой выбрать?

При выборе припоя следует руководствоваться такими критериями, как способ пайки, прочность, температурная стойкость спаиваемых деталей и температура плавления припоя. Так, для пайки тонких обмоточных проводов (диаметром 0,05-0,08 мм) или спиральных пружин в контрольно-измерительных приборах можно воспользоваться припоем ПОС-61 (Sn61Pb39). Такой состав обладает отличной электропроводностью и повышенной механической прочностью. Для пайки плавких предохранителей подойдёт припой ПОСВ-33. При пониженных требованиях к прочности шва и в случае повышенного нагрева можно паять припоями ПОС-18, ПОС-30, ПОС-40.

Пайка твердосплавными припоями

В технологии конструкционных материалов пайку классифицируют двумя видами, различая низко- и высокотемпературные типы. Надо заметить, что это деление — весьма условное, ведь принципы и физика процесса в обоих случаях одинаковые. И состоят они в том, что неразъемное соединение двух, обычно металлических, деталей происходит при посредстве третьего материала, температура плавления которого меньше, чем у соединяемых с его помощью. Этот, третий материал, и называют припоем.

Тем не менее, различия в специфике низкотемпературной и высокотемпературной пайки всё же имеются. Пограничным признаком, разделяющим указанные типы, считают температуру нагрева припоя в 450°C. Именно этот фактор определяет и степень применимости, и спектр пригодных материалов, и технологию самого процесса с соответствующим инструментарием. В итоге, все эти факторы определяют те или иные прочностные показатели изготавливаемого соединения.

Отличия высокотемпературной пайки от низкотемпературной.

При всей схожести процесса, происходящего как при низкотемпературной, так и при высокотемпературной пайках, для полноты представления о применимости этих методов, следует заостриться и на их различиях.

Первое, и оно же главное – это прочность. Ведь мы же неразъёмно соединяем детали? Должно быть прочно — и точка! Поэтому сразу отметим, что твердый, более тугоплавкий припой, применяемый при высокотемпературной пайке, даёт и более прочное соединение. Другой немаловажной характеристикой в ряде случаев будет термоустойчивость паянного шва. Здесь снова пальма первенства за высокотемпературным методом, где именно высокая температура плавления применяемых для него твердосплавных припоев даёт преимущество относительно припоев мягких, начинающих течь при гораздо меньшем нагреве.

Казалось бы, сплошные плюсы в пользу высокотемпературного метода. Но не все так однозначно, когда начинают играть роль физико-химические свойства материалов или массогабаритные факторы паяемых деталей. В частности, локальный перегрев в зоне пайки вызывает структурные деформации у некоторых металлов, например, чугуна. Процессы нагрева и остывания могут образовывать у него местные площадки закаливания в теле у шва, зауглероженные и, как следствие, повышенно хрупкие.

Ещё одна неоднозначность кроется в том, что для расплавления твердосплавных припоев при высокотемпературной пайке, происходящей при 1000°C, требования к источникам нагрева (и технологические, и конструкционные) не позволят использовать такой доступный и удобный инструмент, как паяльник. Кто сам занимался пайкой в повседневной жизни, наверняка знает, что температура жала обычных моделей не превышает 500°C. Подытоживая сказанное, видим, что результат сравнения высокотемпературной и низкотемпературной паек так расставляет приоритеты, что повышенная прочность и термоустойчивость соединения — это преимущество высокотемпературной пайки. Сложность же технологического процесса и специфические требования к оборудованию будут его недостатками.

Применение пайки твердосплавными припоями

На шкале термических неразъемных соединений конструкционных материалов, где самой простой и распространённой является низкотемпературная пайка, а самой прочностной, но и самой технологически сложной – сварка, пайка твердосплавных припоями займет как раз промежуточное положение. Да, она более сложна, чем пайка припоями мягкими, но зато и прочней, и не боится работы в условиях повышенных температур. Да, она не так надёжна, как сварка, но и сохраняет строение структуры спаиваемых металлов, они не деформируются, и не разупрочняются, и не меняют своих свойств.

Классической и распространённой областью применения пайки твёрдыми припоями является изготовление металлорежущего инструмента с режущей кромкой из твердосплавного материала. Пластины из вольфрамового, титанового и т.п. сплавов интегрируются в основное тело резца или сверла как раз таким способом. И при этом припаивание дает приемлемую прочность и отсутствие негативного влияния на конструкционные свойства материалов и геометрию изделий. Еще одной сферой широкого применения высокотемпературной пайки не без основания называют ремонт гидравлических систем, их трубопроводов в автомобилях: радиаторов, патрубков системы охлаждения, гидравлики. Словом, в авторемонте эта технология применима, когда нежелательно или невозможно применять сварку.

Любые тонкостенные детали, особенно если их режим работы подразумевает упругие деформации и серьезные нагрузки, будут несомненной областью применения высокотемпературной пайки в случае необходимости такого ремонта.

Медные, латунные бытовые изделия или их детали, от раритетного дровяного самовара до магистрали современной сплит-системы и холодильника в случае ремонта не обойдутся без высокотемпературной пайки. Мягкий припой, в силу своей неспособности выдержать высокую температуру нагревания, температурные и вибрационные деформации тут совершенно не применим.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *