В чем различие между инвертирующим и неинвертирующим усилителем
Перейти к содержимому

В чем различие между инвертирующим и неинвертирующим усилителем

  • автор:

В чем различие между инвертирующим и неинвертирующим усилителем

Практическое применение операционных усилителей.Часть первая.

Автор:
Опубликовано 06.07.2006

Всем привет.
В этой статье мы обсудим некоторые аспекты практического применения операционных усилителей в повседневной жизни радиолюбителя.
Не растекаясь мыслею по древу и не вдаваясь в дремучие теоретические основы работы вышеозначенного усилителя, давайте все же обозначим некоторые основные термины и понятия, с которыми нам предстоит столкнуться в дальнейшем.
Итак — операционный усилитель. Далее будем называть его ОУ, а то очень лень писать каждый раз полностью.
На принципиальных схемах, чаще всего, он обозначается следующим образом:

На рисунке обозначены три самых главных вывода ОУ — два входа и выход. Разумеется, есть еще выводы питания и иногда выводы частотной коррекции, хотя последнее встречается все реже — у большинства современных ОУ она встроенная. Два входа ОУ — Инвертирующий и Неинвертирующий названы так по присущим им свойствам. Если подать сигнал на Инвертирующий вход, то на выходе мы получим инвертированный сигнал, то бишь сдвинутый по фазе на 180 градусов — зеркальный; если же подать сигнал на Неинвертирующий вход, то на выходе мы получим фазово не измененный сигнал.

Так же как и основных выводов, основных свойств ОУ тоже три — можно назвать их ТриО (или ООО — кому как нравится): Очень высокое сопротивление входа, Очень высокий коэффициент усиления (10000 и более), Очень низкое сопротивление выхода. Еще один очень важный параметр ОУ называется скорость нарастания напряжения на выходе (slew rate на буржуинском). Обозначает он фактически быстродействие данного ОУ — как быстро он сможет изменить напряжение на выходе при изменение оного на входе.
Измеряется этот параметр в вольтах в секунду (В/сек).
Этот параметр важен прежде всего для товарищей, конструирующих УЗЧ, поскольку, если ОУ недостаточно быстрый, то он не будет успевать за входным напряжением на высоких частотах и возникнут изрядные нелинейные искажения. У большинства современных ОУ общего назначения скорость нарастания сигнала от 10В/мксек и выше. У быстродействующих ОУ этот параметр может достигать значения 1000В/мксек.
Оценить — подходит ли тот или иной ОУ для ваших целей по скорости нарастания сигнала можно по формуле:

где, fmax — частота синусоидального сигнала, Vmax — скорость нарастания сигнала, Uвых — максимальное выходное напряжение.
Ну да не будем больше тянуть кота за хвост — приступим к главной задаче этого опуса — куда, собственно, эти клевые штуки можно воткнуть и что из этого можно получить.

Первая схема включения ОУ — инвертирующий усилитель.

Наиболее популярная и часто встречающаяся схема усилителя на ОУ. Входной сигнал подается на инвертирующий вход, а неинвертирующий вход подключается к общему проводу.
Коэффициент усиления определяется соотношением резисторов R1 и R2 и считается по формуле:

Почему «минус»? Потому что, как мы помним, в инвертирующем усилителе фаза выходного сигнала «зеркальна» фазе входного.
Входное сопротивление определяется резистором R1. Ежели его сопротивление, например 100кОм, то и входное сопротивление усилителя будет 100кОм.

Следующая схема — инвертирующий усилитель с повышенным входным сопротивлением.
Предыдущая схема всем хороша, за исключением одного нюанса — соотношение входного сопротивления и коэффициента усиления может не подойти для реализации какого-либо специфического проекта. Ведь что получается — допустим, нам нужен усилитель с К=100. Тогда, исходя из того, что значения резисторов должны быть в разумных пределах берем R2=1Мом, а R1=10кОм. То есть, входное сопротивление усилителя будет равным 10 кОм, что в некоторых случаях недостаточно.
В этих самых случая можно применить следующую схему:

В данном случае, коэффициент усиления считается по следующей формуле:

То есть, при том же коэффициенте усиление сопротивление R1 можно увеличить, а значит и повысить входное сопротивление усилителя.

Едем дальше — неинвертирующий усилитель.
Выглядит он следующим образом:

Коэффициент усиления определяется так:

В данном случае, как видите, никаких минусов нет — фаза сигнала на входе и на выходе совпадает.
Основное отличие от инвертирующего усилителя заключается в повышенном входном сопротивлении, которое может достигать 10Мом и выше.
Если при реализации данной схемы в практических конструкциях, необходимо предусмотреть развязку с предыдущими каскадами по постоянному току — установить разделительный конденсатор, то нужно между входом ОУ и общим проводом включить резистор сопротивлением около 100кОм, как показано на рисунке.

Если этого не сделать, то ОУ перевозбудится и ничего дельного вы от него не получите. Ну кроме половины питания на выходе.

Усилитель с изменяемым коэффициентом усиления.

Примем R1=R2=R3=R. И введем некую переменную А, которая может принимать значения от 1 до 0 в зависимости от поворота движка переменного резистора R3.
Тогда коэффициент усиления можно определить так:
K=2A-1
Входное сопротивление практически не зависит от положения движка переменного резистора.
Так, с усилителями разобрались — дальше у нас по плану — фильтры.

Вопросы, как обычно, складываем тут.

В чем различие между инвертирующим и неинвертирующим усилителем

Формула

Операционные усилители в источниках питания – типы и математика работы

Операционные усилители являются важным элементом схемотехники источников питания, прежде всего – в части построения систем обратной связи и регулировки выходного напряжения, тока, мощности, схемы обратной связи по току. Из большого числа типов операционных усилителей в силовой электронике применяются следующие классы ОУ:

— ОУ общего применения (индустриальные LM324, LM358);

— ОУ с однополярным питанием;

— ОУ с широким диапазоном выходного напряжения – усилители так называемого класса rail-to-rail (R2R).

Другие классы ОУ при построении источников питания используются существенно реже. Условное обозначение операционного усилителя представлено на рисунке OPAMP.1.

Операционный усилитель – это математический прибор, обеспечивающий выполнение математических операций с аналоговыми сигналами. Отдельный операционный усилитель содержит:

При отсутствии обратной связи напряжение на выходе Vout в математически идеальном ОУ связано с напряжением на входе следующим образом:

Формула

Vout – напряжение на выходе ОУ;

V+ – напряжение на неинвертирующем (+) входе;

V – напряжение на инвертирующем (-) входе;

Gopenloop — коэффициент усиления с разомкнутой петлёй обратной связи.

В реальном ОУ максимальное выходное напряжение ограничивается величиной напряжения питания. Режим без обратной связи практически не используется (т.к. он в принципе не нужен), а используются схемы с обратной связью, основными из которых являются:

— схема неинвертирующего усилителя;

— схема инвертирующего усилителя;

— схема дифференциального усилителя.

Основные параметры операционного усилителя

1. Напряжение питания (Supply Voltage) V – напряжение питания операционного усилителя. Обычно указывают минимальный уровень напряжения, при котором еще возможна работа ОУ и максимальное значение между «+» и «-» входами питания выше которого усилитель выходит из строя.

2. Максимальное дифференциальное входное напряжение (Differential Input Voltage) – максимальное напряжение между инвертирующим и неинвертирующим входами ОУ.

3. Максимальное входное напряжение (Input Voltage) – максимальное напряжение на любом из входов ОУ.

4. Максимальная рассеваемая мощность (Power Dissipation) – максимальная мощность рассеваемая корпусом ОУ.

5. Входной ток ОУ (Input Current) – величина тока входов операционного усилителя. В ОУ с входными каскадами на биполярных транзисторах выходной ток может зависеть от полярности напряжения: при положительных входных напряжениях он будет незначительным (единицы-десятки мкА), а при отрицательных напряжениях относительно «–» напряжения питания – составлять десятки мА.

6. Напряжение смещения (Input Offset Voltage) – максимальная разность напряжений между «+» и «-» входами ОУ в линейном режиме работы в составе одной из схем с положительной обратной связью. Этот параметр характеризует точность (прецезионность) ОУ.

7. Входной ток смещения, эквивалентный входной ток (Input Bias Current) – входной ток в линейном режиме работы.

8. Разность входных токов (Input Offset Current) – разность между входными токами ОУ.

9. Диапазон входных напряжений (Input Common-Mode Voltage Range) – показывает минимальное и максимальное напряжения на входах ОУ при условии работы в линейном режиме.

10. Потребляемый ток (Supply Current) – ток питания ОУ. Как правило, указывается ток собственного потребления ОУ без нагрузки.

11. Статический коэффициент усиления при большом сигнале (Large Signal Voltage Gain) – показывает отношение изменения выходного напряжения к вызвавшему это изменение изменению разности потенциалов между входами ОУ.

12. Коэффициент ослабления синфазного сигнала (common-mode rejection ratio).

13. Коэффициент подавления пульсаций напряжения питания (power supply rejection ratio).

14. Коэффициент связи между ОУ – для нескольких ОУ и одном корпусе (Amplifier-to-Amplifier Coupling).

15. Выходной ток цепи источника питания/цепь стока (Output Current Source/Sink).

Основные схемы включения операционных усилителей
Схема неинвертирующего усилителя

На рисунке OPAMP.2 изображена электрическая схема неинвертирующего усилителя на ОУ и её частный случай — повторитель напряжения. Резисторы R1 и R2 образуют резисторный делитель, обеспечивающий отрицательную обратную связь – часть напряжения с выхода ОУ поступает на инвертирующий вход усилителя. Коэффициент усиления регулируется глубиной обратной связи – коэффициентом деления резисторного делителя. Если же напряжение с выход ОУ напрямую подается на инвертирующий вход, то получается схема повторителя напряжения. Преимуществом схемы неинвертирующего усилителя является высокое входное сопротивление, отсутствие инверсии сигнала.

Схема инвертирующего усилителя

На рисунке OPAMP.3 изображена электрическая схема инвертирующего усилителя на ОУ. Здесь отрицательная обратная связь обеспечивается за счет резистора R2 соединенного с выходом микросхемы ОУ.

Недостатками схемы является низкое входное сопротивление, полностью определяемое сопротивлением R1 и инверсия входного сигнала.

Схема дифференциального усилителя

Схема дифференциального усилителя на ОУ (рисунок OPAMP.4) усиливает разность между входными напряжениями. Входное сопротивление схем определяется резистором R1 для входа 1 и суммой сопротивлений R1’ и R2’ для входа 2. Видно, что в общем случае в данной схеме перестановка входных сигналов местами изменяет результат – выходное напряжение. И лишь при равенстве сопротивлений резисторов:

Формула Формула

Выходное напряжение равно:

Формула

Схема прецизионного двухполупериодного выпрямителя

Схема прецизионного двухполупериодного выпрямителя представлена на рисунке OPAMP.5. Величина RL – внутреннего нагрузочного сопротивления, выбирается в разумных пределах исходя из требования, что рабочий ток через него не будет превышать максимальный выходной ток ОУ (как правило, 10-50% от максимального выходного тока). Диоды VD1 и VD2 выбираются одного типа и с максимально близкими вольт-амперными характеристиками.

Виртуальный ноль для питания операционных усилителей

В ряде случаев, когда необходимо обеспечить биполярное питание операционного усилителя при наличии только одного источника питания (с двумя выводами – положительным и отрицательным). Наиболее простым решением по созданию виртуального нуля (искусственной средней точки) является использование резисторного делителя (рисунок OPAMP.6) с буферными конденсаторами для сглаживания импульсных нагрузок. Схемы с операционным усилителем обеспечивают четкую фиксацию напряжения средней точки даже при значительном «перекосе фаз» т.е. большой разности токов потребляемых от «плюсового» и от «минусового» выводов. При значительных потребляемых токах можно использовать схему с дополнительным токовым буфером, выполненным на двух комплементарных транзисторах. В схеме можно использовать недорогие и доступные ОУ общего применения, такие как LM324, LM358. Другим преимуществом схемы является меньшее потребление энергии, что важно при питании от гальванических батарей.

какая разница между инвертирующий и не инвертирующий ОУ с отрицательной обратной связью

Нужно понять в чём разница инвертирующий и не инвертирующий ОУ-операционный усилитель с отрицательной обратной связью.

Лучший ответ

У инвертирующего входа входное сопротивление равно 0, это токовый вход. Чтобы он нормально работал, к нему обычно подключают входной резистор, который по закону Ома преобразует напряжение входного сигнала в ток, и определяет входное сопротивление.
У неинвертирующего входа входное сопротивление бесконечно велико.

Остальные ответы

Схемой включения. На какой из 2х диф. входов ты подал сигнал, а какой стал виртуальным «0». В итоге сигнал на выходе будет совпадать по фазе или отличаться на 180 гр.
Если ОУ рассмотреть без обратной связи, как копаратор, то оба входа начнутся эмиттерным или истоковым повторителем и их сопротивления одинаковы. Вся загвоздка в обратной связи, которая будучи отрицательной должна соеденить выход именно с инвертирующим входом.

Никакой, за исключением, при подаче на инвертирующий вход, сигнал на выходе сдвигается на 180градусов по сравнению с входным . Цепь отрицательной обратной связи как раз подключается к инвертирующему входу, что бы уменьшить коэффициент усиления до нужного значения .Без этой цепи коэффициент усиления ОУ достигает сотен тысяч . Вообще ОУ разрабатывались для аналоговых вычислительных машин, поэтому и имеют два дифференциальных входа, для сложения и вычитания заданных величин в виде электрического напряжения разной величины . На выходе получался результат сложения или вычитания . Так же решались и дифференциальные и интегральные уравнения .

Операционные усилители. Часть 2: Отличия реального операционного усилителя от идеального

В предыдущей публикации цикла мы ознакомились с моделью идеального операционного усилителя и узнали, как собрать на идеальном операционном усилителе пропорциональное (усилительное) звено.

В данной публикации цикла мы рассмотрим отличия «реального» операционного усилителя от «идеального», ознакомимся с ограничениями реального ОУ в следствие этих отличий, узнаем про основные характеристики реальных операционных усилителей.

На КДПВ изображены микросхемы К140УД708, советский аналог «классических» ОУ серии 741, и К574УД2Б, аналог популярного ОУ TL083.

Интегральный операционный усилитель достаточно сложное устройство, но объяснить его работу и дать описание основных характеристик можно и на упрощённых моделях.

Характеристики реального ОУ «в статике»

Чтобы разобраться с характеристиками ОУ в «статике», обратимся к эквивалентной схеме операционного усилителя для низких частот, изображённой на рисунке 1.1 на стр.6 [1]:

Основным элементом ОУ является безынерционное пропорциональное звено с коэффициентом передачи K. Напряжение с выхода этого звена через резистор Rвых подаётся на выход ОУ.

В datasheet обычно указываются следующие характеристики ОУ:

— Коэффициент усиления : характеристика ОУ, численно равная коэффициенту передачи К на постоянном токе или частотах ниже 10 Гц.

— Выходное сопротивление : характеристика ОУ, численно равная Rвых эквивалентной схемы с разомкнутой ООС.

На входы ОУ подаются напряжения Uвх+ и Uвх-. Входы имеют конечное сопротивление и могут потреблять ток, причём для каждого входа разный.

Сформулируем свойство 1 для реального операционного усилителя:

1. Входы реального ОУ имеют конечный импеданс, могут потреблять ток и влиять, таким образом, на входной сигнал.

Если неидеальность ОУ «по входам» во многом определяется ограничениями технологии, то неидеальность «по выходу» — ещё и ограничениями, накладываемыми источником питания.

Свойство 2 для реального операционного с учётом ограничений по питанию:

2. Выход реального ОУ имеет ненулевое сопротивление и может обеспечить ограниченный диапазон напряжений при ограниченном токе в нагрузке.

Ещё в datasheet на ОУ обязательно указывают:
— Номинальное напряжение питания
— Диапазон выходных напряжений
— Сопротивление нагрузки

Поясним рассмотренные параметры на примере операционного усилителя К140УД708.

Этот ОУ рассчитан на работу от двухполярного источника напряжения UП = ± 15 В и может обеспечивать на выходе диапазон напряжений Uвых = ± 10,5 В на нагрузке сопротивлением Rн = 2 кОм. Ёмкость нагрузки не должна превышать 1000 пФ. Коэффициент усиления ОУ К140УД708 на частоте 5 Гц при UП = ± 15 В, Uвых = ± 10 В и Rн = 2 кОм равен 30000.

Вернёмся к параметрам входных цепей:

— Диапазон синфазных входных напряжений : диапазон допустимых входных напряжений на соединённых вместе входах ОУ. Обычно лежит в пределах напряжения источника питания.

— Дифференциальное входное напряжение : диапазон допустимых входных напряжений между входами ОУ. Может лежать в пределах от долей вольта до напряжения однополярного источника питания (двух напряжений питания для двухполярного).

При подаче на входы реального операционного усилителя напряжений вне этих диапазонов возможен выход ОУ из строя.

— Входное сопротивление : сопротивление входа, измеренное при подаче на другой вход напряжения 0 В. На эквивалентной схеме обозначено Rвх. Может называться «входным сопротивлением для дифференциального сигнала». Для ОУ со входом на биполярных транзисторах может составлять 10 3 – 10 6 Ом и более. Входное сопротивление входов на полевых транзисторах значительно выше.

— Входное сопротивление для синфазного сигнала : обозначено на эквивалентной схеме как два резистора сопротивлением Rсф, включённых параллельно источникам тока I+ и I-. Обычно на один-два порядка превышает значение Rвх.

— Входной ток : среднеарифметическое значение суммы входных токов, обозначенных на эквивалентной схеме как два источника тока I+ и I-, измеренных при таком значении Uвх, что Uвых = 0. Входной ток может изменяться при изменении напряжения питания и сопротивления нагрузки.

— Входной ток смещения : абсолютное значение разности токов, втекающих в каждый вход при таком значении Uвх, что Uвых = 0. Характеризует «асимметрию» входов, вызванную технологическими причинами.

— Напряжение смещения : величина разности напряжений Uсм = (Uвх+ – Uвх-) на входах операционного усилителя, при которой напряжение Uвых = 0. Т.к. Uсм может иметь любой знак, на эквивалентной схеме оно складывается с Uвх-.

— Коэффициент подавления синфазных сигналов : на эквивалентной схеме подавление синфазных сигналов осуществляется безынерционным пропорциональным звеном, на вход которого подаётся разность напряжений (Uвх+ – Uвх-). Коэффициент передачи звена (0.5 / Mсф). Чем выше Mсф, тем меньше изменение синфазного сигнала влияет на выходное напряжение ОУ.

Характеристики реального ОУ «в динамике»

Основное отличие реального ОУ от идеального заключается в том, что в «динамике» реальный ОУ ведёт себя как фильтр низких частот (ФНЧ).

Отсюда свойства 3 и 4 реального операционного усилителя можно сформулировать так:

3. Коэффициент передачи реального ОУ с разомкнутой ООС может составлять 10 4 – 10 6 (80 — 120 дБ) на низких частотах и уменьшается с ростом частоты.

4. Время задержки распространения сигнала в реальном ОУ не равно нулю, по напряжению фаза выходного сигнала отстаёт от фазы входного сигнала.

Рассмотрим две важнейшие динамические характеристики реального ОУ:

— Частота единичного усиления : частота (Гц), при которой коэффициент усиления ОУ равен единице.

— Максимальная скорость нарастания выходного напряжения : характеристика (В/мкс), отражающая скорость реакции ОУ на прямоугольный импульс на входе.

Отличие реального ОУ от идеального в «динамике» разберём по методике, приведённой в разделе 7.1.4 на стр.86-88 [4].

Рассмотрим поведение реального ОУ без встроенной частотной коррекции по кривым, обозначенным I на диаграмме Боде, приведённой выше, и по эквивалентной схеме I.

На частотах ниже f2 реальный ОУ ведёт себя как ФНЧ 1-го порядка с частотой среза f1. Частота среза f1 определяется характеристиками входного дифференциального каскада, обозначенных на эквивалентной схеме паразитным конденсатором, нарисованным пунктиром. На частотах в диапазоне от f1 до f2 АЧХ реального ОУ имеет наклон -6 дБ на октаву.

На частотах выше f2 на АЧХ начинают оказывать влияние характеристики второго каскада ОУ. АЧХ на этих частотах имеет наклон -12 дБ на октаву, что соответствует характеристике ФНЧ 2-го порядка.

Фазовый сдвиг на частотах ниже f1 равен 0°. Фазовый сдвиг в диапазоне от f1 до f2 равен -90°, а на частотах выше f2 равен -180°.

Если на частоте f2 коэффициент усиления ОУ больше единицы (0 дБ), отрицательная обратная связь становится положительной, и ОУ переходит в режим самовозбуждения.

Устойчивая работа реального ОУ в «динамике» достигается введением частотной коррекции.

На эквивалентной схеме II частотная коррекция обеспечивается введением в схему конденсатора CK. Амплитудно-частотная и фазовая характеристики реального ОУ с однополюсной частотной коррекцией показаны на диаграмме Боде кривыми, обозначенными как II.

Суть однополюсной частотной коррекции: обеспечить такую частоту среза fO1, чтобы на частоте f1 коэффициент усиления ОУ был равен единице (0 дБ).

Таким образом, сделана встроенная частотная коррекция «классического» ОУ серии 741. Наличие встроенной частотной коррекции сделало ОУ этой серии крайне популярными. Частота единичного усиления f0 такого ОУ невысокая — 1,0 МГц, но этого, как оказалось, достаточно для многих приложений.

Частоту единичного усиления f0 можно поднять с помощью двухполюсной («опережающей») коррекции. На эквивалентной схеме III двухполюсная коррекция обеспечивается введением в схему резистора RK, включённого последовательно с конденсатором CK. Амплитудно-частотная и фазовая характеристики реального ОУ с двухполюсной частотной коррекцией показаны на диаграмме Боде кривыми, обозначенными как III.

Цепь «опережающей» частотной коррекции обеспечивает подъём АЧХ на 6 дБ на частотах выше f1. Частота среза fO2 выбрана таким образом, чтобы коэффициент усиления ОУ был равен единице на частоте f2.

Следует отметить, что введение частотной коррекции повышает устойчивость звена на ОУ за счёт большей инерционности этого звена, и, следовательно, снижения скорости нарастания выходного напряжения.

Ограничения реального ОУ

Современные технологии позволяют выпускать недорогие rail-to-rail ОУ универсального применения, не требующие внешней «обвязки» в виде цепей частотной коррекции и коррекции нуля. Допустимые диапазоны входных сигналов (синфазного и дифференциального) и диапазон выходного сигнала таких ОУ обычно равны напряжению питания.

В настоящий момент времени разными производителями выпускается большое количество разнообразных ОУ с отличающимися параметрами, которые при выборе ОУ необходимо уточнять по datasheet производителя.

Сосредоточимся на ограничениях, справедливых для подавляющего количества существующих ОУ.

Реальный ОУ при отключении ООС переходит в режим насыщения за счёт высокого коэффициента усиления и наличия токов смещения.

Как и в случае идеального операционного усилителя характеристики схем на реальных ОУ определяются параметрами цепи ООС. Цепи ООС должны быть рассчитаны таким образом, чтобы при любом значении входных напряжений из рабочего диапазона выходной каскад ОУ не входил в режим насыщения.

Для снижения влияния сопротивления входов и выхода ОУ на параметры цепи ООС подбор номиналов резисторов R1 и R2 нужно осуществлять так, чтобы:
— сопротивление R1 было больше, чем выходное сопротивление ОУ Rвых;
— сопротивление R2 было меньше чем входное сопротивление Rвх.

Для компенсации тока смещения неинвертирующий вход ОУ подключается через резистор R3 с сопротивлением, равным сопротивлению параллельно включённых R1 и R2. Это необходимо для ОУ с входным каскадом на биполярных транзисторах и необязательно для ОУ с входным каскадом на полевых.

Схема инвертирующего усилителя с компенсацией тока смещения:

Схема неинвертирующего усилителя с компенсацией тока смещения:

Сопротивления резисторов R1, R2 для ОУ со входами на биполярных транзисторах обычно выбираются в пределах от 2 до 100 кОм так, чтобы сопротивление резистора R3 лежало в диапазоне от 2 до 10 кОм. При выборе сопротивления R2 в единицах МОм нужно быть готовым к тому, что ОУ с такими цепями ООС будет работать нестабильно.

Входное сопротивление инвертирующего усилителя на реальном ОУ приблизительно равно сопротивлению резистора R1.

Входное сопротивление неинвертирующего усилителя на реальном ОУ приблизительно равно входному сопротивлению синфазному сигналу Rсф операционного усилителя.

Также при расчёте ООС необходимо учитывать частотный диапазон. На рисунке ниже приведён пример зависимости диапазона рабочих частот от коэффициента передачи звена на ОУ:

Как видно из графика, c увеличением коэффициента передачи диапазон рабочих частот сужается. То есть, звено на ОУ может обеспечивать k = 1 (0 дБ) на частотах ниже f0, k = 10 (20 дБ) на частотах ниже f20 и т.д.

Помимо всего вышесказанного, реальный ОУ подвержен влиянию внешней среды и имеет температурный дрейф параметров, зависимость от нестабильности источника питания, ограничения по тепловыделению и т.д.

▍ От автора

Нельзя объять необъятное и раскрыть в одной статье все нюансы всех характеристик всех существующих операционных усилителей. Я очень надеюсь, что данная публикация даст ключ к пониманию основ.

«Библией» разработки на ОУ является, несомненно, «Искусство схемотехники» Хоровица и Хилла. Но как это работает изнутри, я окончательно разобрался только при разборе моделей, которые привёл в этой публикации.

Данный цикл публикаций состоит из семи частей. Краткое содержание публикаций:

  1. Предпосылки появления ОУ. «Идеальный» операционный усилитель. Инвертирующий и неинвертирующий усилители, повторитель.
  2. Отличия «реального» ОУ от «идеального». Основные характеристики реального ОУ. Ограничения реального ОУ. < — Вы тут
  3. Суммирующий усилитель. Разностный усилитель. Измерительный усилитель. Интегрирующее звено. Дифференцирующее звено. Схема выборки-хранения.
  4. Активный детектор. Активный пиковый детектор. Логарифмический усилитель. Активный ограничитель сигнала. Компаратор на ОУ. Источник опорного напряжения. Источник тока. Усилитель мощности.
  5. Частотно-зависимая обратная связь в ОУ. Активные фильтры на ОУ. Генераторы сигналов на ОУ.
  6. Однополярное включение ОУ. Входные помехи, «развязки» и защиты входных цепей, экранирование.
  7. Операционные усилители на лампах.

▍ Использованные источники:

  1. Гутников. Интегральная электроника в измерительных устройствах. Энергоатомиздат, 1988
  2. Хоровиц, Хилл. Искусство схемотехники. 2-изд. Мир, 1993
  3. Титце, Шенк. Полупроводниковая схемотехника. 5-изд. Мир, 1982
  4. Шкритек. Справочное руководство по звуковой схемотехнике. Мир, 1991

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *