Привод и двигатель в чем разница
Перейти к содержимому

Привод и двигатель в чем разница

  • автор:

Чем отличается редуктор от мотор-редуктора

Редуктор и мотор-редуктор статья

Использование различных промышленных систем и узлов практически никогда не обходится без редукторной части. Подобный агрегат позволяет преобразовывать вращающий момент и тем самым обеспечивает высокую эффективность всего оборудования. Существуют редукторы и мотор-редукторы: подобные механизмы различаются принципом работы, конструкцией, сферами применения. Разберемся, чем отличается редуктор от мотор-редуктора и в каких случаях используется каждый из типов изделий.

Навигация по статье
Конструктивные особенности приводов
Отличия оборудования
Применение
Выбор механизма

Конструктивные особенности приводов

Оборудование, в котором движение узлов происходит за счет электродвигателя, называется приводной техникой. В стандартном варианте она состоит из привода, двигателя и редуктора. Если говорить о стандартном механизме, то он является полностью автономным механизмом. Это дает ряд преимуществ при использовании. Например, при выходе техники из строя не потребуется менять все целиком – потребуется замена только поврежденного узла. Однако конструкция получается довольно громоздкой, кроме этого, она требует длительного поэтапного монтажа. В мотор-редукторах в едином корпусе объединено сразу несколько компонентов, за счет чего агрегат более компактен и технологичен. Однако выход из строя одного из элементов грозит заменой всей системы. Связано это с тем, что редукторный механизм в составе такого механизма имеет нестандартную конструкцию, также присутствует сложное соединение двигателя и самого механизма.

Отличия оборудования

  • Тип передачи.
  • Размеры присоединительных элементов.
  • Частота вращения выходного вала.
  • Конструктивные особенности.
  • Комплектация.
  • Особенности нагрузки.
  • Тип используемой смазки.

вариант мотор-редуктора

Редукторы применяются практически повсеместно – их можно встретить в различных станках, лентах, производственном оборудовании. Выступая как отдельное устройство, такой агрегат позволяет согласовать режимы работы целевого оборудования с источником вращательного момента.

Однако мотор-редукторы считают более эффективными. Системы обеспечивают небольшой крутящий момент и относительно высокую скорость вращения вала. Изделия нашли применение в различной промышленной технике, в которой требуется упростить конструкцию устройств и одновременно снизить их стоимость. Благодаря моноблочной конструкции подобный механизм более популярен на производственных объектах.

Как мы уже отметили, конструктивно мотор-редуктор представляет собой единый блок, в котором объединены электродвигатель и преобразователь скоростей. Это позволяет закладывать одно место установки и упростить процесс сборки. Нет необходимости в обеспечении соосности валов, а также установки муфты. При этом конструкция мотор-редуктора предполагает некоторые вариации. Корпус обычно производится с запасом прочности, что позволяет обеспечить надежное функционирование механизма.

Монтаж производится за счет подготовленных посадочных мест. Как правило, в конструкции редукторной части предусмотрены цилиндрические отверстия, которые служат для установки вала. Что касается электропривода устройства, то в его качестве подходят любые типы электрических двигателей. Чаще всего применяются стандартные асинхронные варианты.

Если говорить о принципе работы изделия, то он практически не отличается от классического агрегата. Вращающий момент двигателя передается на основную шестерню, которая устанавливается на моторном валу. Скорость вращения на выходе зависит от технических параметров самого двигателя, а также передаточного числа. Для получения повышающего коэффициента требуется применять многоступенчатые модели устройств. Для регулировки скорости работы устанавливаются системы с преобразователями, которые регулируют количество оборотов.

Применение

siemens

Двигатель с редуктором, или мотор-редуктор имеет практически такую же область применения, как и стандартный агрегат. Он полностью перекрывает все возможные варианты использования связки отдельного электрического двигателя с редукторной частью.

В большинстве случаев моноблочные конструкции оказываются более выгодными по стоимости, массе, размерам. Однако, в отличие от обычных механизмов, моноблочные системы более подвержены скачкам нагрузки. Поэтому их обязательно нужно выбирать с запасом по динамической прочности.

В ряде случаев незаменимым является использование именно моноблочного мотор-редуктора. Например, это может потребоваться в небольших устройствах автоматики или оборудовании, где использование отдельного преобразователя и мотора может усложнить конструкцию и снизить ее надежность.

Выбор механизма

Выбор агрегата лучше всего выполнять на основе режима работы всего оборудования, требуемой мощности, необходимого числа оборотов. Обязательно учитывается месторасположение валов и отдельных компонентов.

Расчет редуктора и мотор-редуктора проводится по стандартной схеме. Многие технические параметры подбираются по специальным таблицам, требуемая мощность и передача рассчитываются по формулам.

Установка и эксплуатация механизмов не представляют сложности, поэтому в большинстве случаев проходят без проблем. При корректном выборе оборудования удается добиться большого срока службы механизмов, а также минимизировать риски поломок.

Если у вас остались вопросы по выбору агрегата, то специалисты компании «ФиФ» готовы оказать нужную помощь. Звоните по указанным номерам или оставляйте заявку на нашем сайте!

Двигатель и привод — в чем разница?

Очень важно понимать разницу между двигателями и приводами. Двигатель (мотор) — это механическое или электрическое устройство, генерирующее вращательное или линейное усилие, используемое для движения механизмов. К двигателю обычно также прилагается устройство управления, называемое драйвер — это электронное устройство, управляющее электрической энергией, передаваемой мотору. Драйвер обеспечивает двигатель электроэнергией различной амплитуды и частоты, косвенно управляя скоростью и крутящим моментом мотора.

Существуют две основные разновидности управляющих устройств: стандартный инвертор (преобразователь частоты) с управлением только частотой вращения и крутящим моментом, и серводрайвер (сервоусилитель) с управлением не только частотой вращения и крутящим моментом, но и позиционированием компонентов оборудования при выполнении операций, требующих сложного движения узлов механизма. В отдельных случаях на мотор в ЧРП можно установить энкодер, и создать систему с обратной связью по положению, получив опять же сервопривод.

Устройство управления вместе с мотором и образуют узел, называемый «привод».

Сервопривод или шаговый двигатель: какова разница и что выбрать?

Сервопривод станка с ЧПУ

Устройство шагового двигателя

Шаговый привод состоит из синхронной электрической машины и управляющего контроллера. Последний обеспечивает подачу управляющих сигналов на обмотки двигателя и их попеременное включение в соответствии с заданной программой. Шаговый двигатель — электрическая машина, преобразующая управляющие сигналы в перемещение вала на определенный угол и фиксацию его в заданном положении. Количество шагов таких электродвигателей составляет от 100 до 400, угол шага — от 0,9-3,6°.

Принцип работы шагового двигателя

Шаговые двигатели

Состоит это электромеханическое устройство из статора, где размещены катушки возбуждения, и вращающейся части с постоянными магнитами или обмотками. Такая конструкция ротора обеспечивает его фиксацию после отработки управляющей команды. На статоре расположено несколько обмоток. При подаче напряжения на катушку, под воздействием магнитного поля ротор поворачивается на определенный угол в соответствии с пространственным положением обмотки. При ее обесточивании и подаче управляющего сигнала на другую катушку вращающаяся часть электродвигателя занимает другую позицию. Каждый поворот вала соответствует углу шага. При обратной последовательности подачи напряжения на катушки ротор вращается в противоположном направлении. Для поворота ротора на меньший угол одновременно включаются 2 обмотки. Количество шагов ограничено и зависит от числа полюсов статора электромотора. Для обеспечения плавного вращения ротора на катушки статора подают разные токи, разность которых определяет положение ротора. Такой способ управления позволяет снизить дискретность и увеличить количество шагов до 400. К числу недостатков шаговых двигателей можно отнести довольно низкую скорость, пропуск шагов при высокой (выше расчетной) нагрузке на валу, снижение момента при высокой частоте вращения и большое время разгона.

Устройство сервопривода

Устройство сервопривода

Сервопривод состоит из синхронного двигателя, датчика скорости и положения, а также управляющего контроллера. Основная разница между шаговым двигателем и сервоприводом состоит в наличии обратной связи по положению, скорости, моменту на валу ротора. Электропривод такого типа построен на базе следящей схемы автоматического регулирования. При несоответствии скорости или другой величины контроллер будет подавать сигналы на отработку, пока требуемый параметр или положение вала не будет соответствовать заданному. В качестве датчика обратной связи используют абсолютные и относительные энкодеры различных типов и конструкций.

Принцип действия сервопривода

Управляющее устройство в соответствии с заданной программой подает напряжение на сервопривод, который соединен с порталом станка. Двигатель перемещает рабочий орган. При этом энкодер вырабатывает импульсы, поступающие на контроллер. Подсчет их числа осуществляет управляющее устройство. Количество импульсов пропорционально перемещению портала. При достижении рабочим органом заданного положения на электромотор перестает поступать напряжение. Портал фиксируется. Пока число импульсов, зафиксированных контроллером с датчика, не достигнет запрограммированной величины, двигатель будет осуществлять перемещение рабочего органа. Шаговый сервопривод можно также настроить на поддержание постоянной частоты вращения вне зависимости от нагрузки или постоянного момента при разной скорости. К достоинствам сервоприводов относятся точность позиционирования, динамика разгона и отсутствие снижения момента при высоких скоростях. Ограничивает применение сервопривода, как правило, достаточно большая стоимость.

Чем отличается сервопривод от шагового двигателя?

Критерий сравнения Шаговые двигатели Сервоприводы
Эксплуатационный ресурс Шаговые электромоторы не имеют коллекторного узла, подверженного износу. Также они не имеют частей, нуждающихся в регулярном техобслуживании и замене Коллекторные серводвигатели необходимо регулярно обслуживать. Максимальный срок службы коллекторного узла — 5000 часов непрерывной работы. При этом бесщеточные сервомоторы не уступают в надежности шаговым двигателям
Точность перемещений исполнительного органа Современные шаговые электродвигатели обеспечивают перемещение рабочей части с точностью до 0,01 мм. Отличие шагового двигателя от сервопривода заключается в пропуске шагов при высокой (выше расчетной) нагрузке, что значительно снижает качество обработки Сервопривод для поворотного стола фрезерного станка или портала другого оборудования обеспечивает точность до 0,002 мкм. Позиционирование по следящей схеме обеспечивает высокое качество обработки независимо от нагрузки
Время разгона и скорость перемещения портала Максимальная скорость перемещения рабочих органов при использовании шагового электропривода — 25 м. Время разгона — 120 об/мин за секунду Сервопривод может перемещать портал со скоростью более 60 м/мин. Время разгона составляет до 1000 об/мин за 0,2 секунды
Реакция на принудительную остановку Шаговые двигатели хорошо переносят механические перегрузки и не выходят из строя при аварийных остановках Сервоприводы необходимо оснащать дополнительной защитой, отключающей электромотор при принудительной остановке портала. В противном случае обмотки электрической машины могут сгореть
Стоимость За счет простоты конструкции шаговый двигатель имеет относительно невысокую цену За счет датчиков обратной связи (энкодеров) и более сложной схемы регулирования сервопривод считается дорогостоящим оборудованием

Привод станка с ЧПУ

Критерии выбора

  • Производительность. По этому параметру сервоприводы значительно превосходят шаговые электромоторы. На станок с ЧПУ для обработки крупных деталей или заготовок из твердых материалов лучше уставить сервомотор, например, ESTUN 1000 Вт. Такой электропривод обеспечит более высокую скорость обработки твердых материалов. Для малогабаритного промышленного оборудования (например, настольного фрезерного станка) среднего класса точности, предназначенного для обработки мягких материалов, лучше выбрать шаговый двигатель.
  • Эксплуатационные расходы. Программирование и настройка сервопривода на станке с ЧПУ требуют высокой квалификации исполнителя. Такой привод намного дороже в обслуживании, соответственно расходы на его эксплуатацию будут выше.
  • Точность. Сервоприводы для станков с ЧПУ необходимы для высокоточной автоматизированной обработки. Такой привод позволяет позиционировать положение рабочего органа с точностью до 0,02 мкм, в то время как максимальная точность шаговой электрической машины — 0, 01 мм.
  • Цена. Стоимость шагового двигателя значительно ниже цены сервопривода. При невысоком бюджете лучше предпочесть первый вариант.
  • Уровень шума. По этому показателю сервомоторы предпочтительней. Работа шаговых электродвигателей сопровождается звуком, соответствующим частоте шагов на различных оборотах.

Таким образом, выбор сервопривода или шагового двигателя в качестве привода на фрезерно-гравировальный станок и оборудование для плазменной резки следует совершать, руководствуясь исключительно экономической и технической целесообразностью.

Читайте также

Фрезерные станки с ЧПУ для малого бизнеса

Обновлено: 18.02.2024

Для построения и развития успешного бизнеса, связанного с работой на фрезерном станке с ЧПУ, важно наличие значительных преимуществ перед конкурентами: например, высочайшего качества продукции и доступных цен. В данной статье расскажем, какие именно станки с ЧПУ подходят для малого бизнеса, какова стоимость того или иного оборудования, и насколько рентабелен такой вид деятельности.

Технические характеристики и сфера применения фрезерных станков с ЧПУ

Обновлено: 18.02.2024

Станки с ЧПУ значительно повлияли на сферу металлообработки и на работу с другими материалами. Программируемые установки обеспечиваюют повышенную точность фрезеровки, что приводит к значительному увеличению производительности труда. Процесс обработки заготовок проходит беспрерывно и в строгом соответствии заданной программе, а результат работы отличается высокой точностью. В статье мы рассмотрим важнейшие технические характеристики фрезерных станков с ЧПУ и основные сферы их применения.

Фрезы для деревообрабатывающих станков с ЧПУ

Обновлено: 18.02.2024

Рабочий режущий инструмент станков с ЧПУ — это фреза. Конструктивно она является вращающейся деталью с заточенными зубьями. Фрезы для станков с ЧПУ по дереву производят из разных сплавов и делят на категории. Их выбор зависит от характеристик обрабатываемой поверхности, типа работы и степени твердости древесины. Правильно выбрать подходящий инструмент для программных станков поможет наша статья, которая познакомит вас с типами фрез и их назначением.

Характеристики шагового двигателя

Обновлено: 06.03.2024

Шаговое устройство — бесщеточный двигатель с несколькими обмотками, функционирующий по синхронному принципу. Принцип работы шагового двигателя заключается в поочередной активации обмоток, которые обеспечивают вращение / остановку ротора.

Специфика сверлильных станков с ЧПУ

Обновлено: 06.03.2024

Современные сверлильные станки с ЧПУ используются на производствах, на которых в больших объемах осуществляется обработка деталей всевозможного назначения, например, на мебельных фабриках. Сегодня производители предлагают покупателям модели сверлильных станков с ЧПУ во всем функциональном многообразии.

Сравнение сервоприводов и шаговых двигателей

Сервопривод

Физика процесса

Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического регулирования и управления, в быту. Электрические машины преобразуют механическую энергию в электрическую и наоборот, электрическую энергию в механическую. Машина, преобразующая механическую энергию в электрическую, называется генератором. Преобразование электрической энергии в механическую осуществляется двигателями.Принцип действия электрических машин основан на использовании законов электромагнитной индукции и электромагнитных сил. Если в магнитном поле полюсов постоянных магнитов или электромагнитов поместить проводник и под действием какой-либо силы F1 перемещать его, то в нем возникает Э.Д.С. равная: E = B × I × v E= B times I times v где В — магнитная индукция в месте, где находится проводник,
l — активная длина проводника (та его часть, которая находится в магнитном поле),
v — скорость перемещения проводника в магнитном поле. Если этот проводник замкнуть на какой-либо приемник энергии, то в замкнутой цепи под действием Э.Д.С. будет протекать ток, совпадающий по направлению с Э.Д.С. в проводнике. В результате взаимодействия тока I в проводнике с магнитным полем полюсов создается электромагнитная сила Fэ, направление которой определяется по правилу левой руки; эта сила будет направлена навстречу силе, перемещающей проводник в магнитном поле. При равенстве сил F1 = Fэ проводник будет перемещаться с постоянной скоростью. Следовательно, в такой простейшей электрической машине механическая энергия, затрачиваемая на перемещение проводника, преобразуется в энергию электрическую, отдаваемую сопротивлению внешнего приемника энергии, т. е. машина работает генератором. Та же простейшая электрическая машина может работать двигателем. Если от постороннего источника электрической энергии через проводник пропустить ток, то в результате взаимодействия тока в проводнике с магнитным полем полюсов создается электромагнитная сила Рэ, под действием которой проводник начнет перемещаться в магнитном поле, преодолевая силу торможения какого-либо механического приемника энергии. Таким образом, рассмотренная машина так же, как и любая электрическая машина, обратима, т. е. может работать как генератором, так и двигателем. Для увеличения Э.Д.С. и электромеханических сил электрические машины снабжаются обмотками, состоящими из большого числа проводов, которые соединяются между собой так, чтобы Э.Д.С. в них имели одинаковое направление и складывались. Э.Д.С. в проводнике будет индуктирована также и в том случае, когда проводник неподвижен, а перемещается магнитное поле полюсов.

2. Асинхронные двигатели

Вид асинхронной машины с короткозамкнутым ротором в разрезе

Наиболее распространенные электрические машины. В основном они используются как электродвигатели и являются основными преобразователями электрической энергии в механическую.Асинхронный двигатель имеет статор (неподвижная часть) и ротор (подвижная часть), разделенные воздушным зазором, ротор крепится на подшипниках. Активными частями являются обмотки; все остальные части — конструктивные, обеспечивающие необходимую прочность, жесткость, охлаждение, возможность вращения и т. п. По конструкции ротора асинхронные машины подразделяют на два основных типа: с короткозамкнутым ротором и с фазным ротором. Оба типа имеют одинаковую конструкцию статора и отличаются лишь исполнением обмотки ротора. Магнитопровод ротора выполняется аналогично магнитопроводу статора — из электротехнической стали и шихтованным. Фазный ротор используют когда необходимо создать большой пусковой момент. К ротору подводят ток и в результате уже возникает магнитный поток необходимый для создания момента. На обмотку статора подается напряжение, под действием которого по этим обмоткам протекает ток и создает вращающееся магнитное поле. Магнитное поле воздействует на стержни ротора и по закону магнитной индукции возникает электрический ток т. к. изменяется магнитный поток, проходящий через замкнутый контур ротора. Токи в стержнях ротора создают собственное магнитное поле стержней, которые вступают во взаимодействие с вращающимся магнитным полем статора. В результате на каждый стержень действует сила, которая складываясь по окружности создает вращающийся электромагнитный момент ротора из-за того, что индукционный ток, возникающий в замкнутом контуре ротора, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток. Следовательно и возникает вращение.Частота вращения ротора не может достигнуть частоты вращения магнитного поля, так как в этом случае угловая скорость вращения магнитного поля относительно обмотки ротора станет равной нулю, магнитное поле перестанет индуцировать в обмотке ротора Э.Д.С. и, в свою очередь, создавать крутящий момент. На рисунке приведен вид асинхронной машины с короткозамкнутым ротором в разрезе: 1 — станина, 2 — сердечник статора, 3 — обмотка статора, 4 — сердечник ротора с короткозамкнутой обмоткой, 5 — вал.

3. Синхронные двигатели

Синхронный двигатель не имеет принципиальных конструктивных отличий от асинхронных. На статоре синхронного двигателя помещается трехфазная обмотка, при включении которой в сеть трехфазного переменного тока будет создано вращающееся магнитное поле, число оборотов в минуту которого n = 60f/p, где f — частота напряжения питания привода. На роторе двигателя помещена обмотка возбуждения, включаемая в сеть источника постоянного тока. Либо ротор выполнен из постоянного магнита. Ток возбуждения создает магнитный поток полюсов или в случае с постоянным магнитом, магнитный поток уже создан. Вращающееся магнитное поле, полученное токами обмотки статора, увлекает за собой полюса ротора. При этом ротор может вращаться только с синхронной скоростью, т. е. со скоростью, равной скорости вращения поля статора. Таким образом, скорость синхронного двигателя строго постоянна, если неизменна частота тока питающей сети. Достоинством синхронных двигателей является меньшая, чем у асинхронных, чувствительность к изменению напряжения питающей сети. У синхронных двигателей вращающий момент пропорционален напряжению сети в первой степени, тогда как у асинхронных — квадрату напряжения. Вращающий момент синхронного двигателя создается в результате взаимодействия магнитного поля статора с магнитным полем полюсов. От напряжения питающей сети зависит только магнитный поток поля статора.

4. Шаговые двигатели

Шаговые двигатели — это электромеханические устройства, преобразующие сигнал управления в угловое (или линейное) перемещение ротора с фиксацией его в заданном положении без устройств обратной связи. По сути шаговый двигатель является синхронным, но отличается подходом управления. Рассмотрим самые распространенные.

5. Двигатели с постоянными магнитами

Двигатели с постоянными магнитами состоят из статора, который имеет обмотки, и ротора, содержащего постоянные магниты. Чередующиеся полюса ротора имеют прямолинейную форму и расположены параллельно оси двигателя. Благодаря намагниченности ротора в таких двигателях обеспечивается больший магнитный поток и, как следствие, больший момент, чем у двигателей с переменным магнитным сопротивлением. Такой двигатель имеет величину шага 30°. При включении тока в одной из катушек, ротор стремится занять такое положение, когда разноименные полюса ротора и статора находятся друг напротив друга. Для осуществления непрерывного вращения нужно включать фазы попеременно. На практике двигатели с постоянными магнитами обычно имеют 48—24 шага на оборот (угол шага 7,5—15°). Двигатели с постоянными магнитами подвержены влиянию обратной Э.Д.С. со стороны ротора, котрая ограничивает максимальную скорость.

6. Гибридные двигатели

Являются более дорогими, чем двигатели с постоянными магнитами, зато они обеспечивают меньшую величину шага, больший момент и большую скорость. Типичное число шагов на оборот для гибридных двигателей составляет от 100 до 400 (угол шага 3,6…0,9°). Ротор гибридного двигателя имеет зубцы, расположенные в осевом направлении. Ротор разделен на две части, между которыми расположен цилиндрический постоянным магнит. Таким образом, зубцы верхней половинки ротора являются северными полюсами, а зубцы нижней половинки — южными. Кроме того, верхняя и нижняя половинки ротора повернуты друг относительно друга на половину угла шага зубцов. Число пар полюсов ротора равно количеству зубцов на одной из его половинок. Зубчатые полюсные наконечники ротора, как и статор, набраны из отдельных пластин для уменьшения потерь на вихревые токи. Статор гибридного двигателя также имеет зубцы, обеспечивая большое количество эквивалентных полюсов, в отличие от основных полюсов, на которых расположены обмотки. Обычно используются 4 основных полюса для 3,6° двигателей и 8 основных полюсов для 1,8…0,9° двигателей. Зубцы ротора обеспечивают меньшее сопротивление магнитной цепи в определенных положениях ротора, что улучшает статический и динамический момент. Это обеспечивается соответствующим расположением зубцов, когда часть зубцов ротора находится строго напротив зубцов статора, а часть между ними. Зависимость между числом полюсов ротора, числом эквивалентных полюсов статора и числом фаз определяет угол шага S двигателя: S = 360 / ( Nph × Ph ) = 360 / N S= 360 / ( Nph times Ph ) = 360 / N где Nph — число эквивалентных полюсов на фазу, равное числу полюсов ротора,
Ph — число фаз,
N — полное количество полюсов для всех фаз вместе.

7. Сервопривод

График зависимости момента от скорости вращения двигателя

Сервопривод — общее название привода, синхронного, асинхронного либо любого другого, с отрицательной обратной связью по положению, моменту и др. параметрам, позволяющего точно управлять параметрами движения. Сервопривод – это комплекс технических средств. Состав сервопривода: привод – например, электромотор, датчик обратной связи – например, датчик угла поворота выходного вала редуктора (энкодер), блок питания и управления (он же преобразователь частоты \ сервоусилитель \ инвертор \ servodrive). Мощность двигателей: 0,05…15 кВт. Существует понятие «вентильный двигатель». Это всего лишь названия для двигателя, управление которым осуществляется через «вентили» – ключи, переключатели и т. п. коммутационные элементы. Современными «вентилями» являются IGBT-транзисторы использующиеся в блоках управления приводами. Никакого конструктивного отличия нет. Основным достоинством сервоприводов является наличие обратной связи, благодаря которой такая система может поддерживать точность позиционирования на высоких скоростях и высоких моментах. Также систему отличает низкоинерционность и высокие динамические характеристики, например время переключения от скорости –3 000 об/мин до достижения 3 000 об/мин составляет всего 0,1 с. Современные блоки управления являются высокотехнологическими изделиями со сложной системой управления и могут обеспечить выполнение практически любой задачи. Характеристики системы сервопривода рассмотрим основываясь на сервоприводах фирмы Delta elc. Серии блока управления ASDA-A и двигателем 400 Вт. Как видно поддержание момента линейное на всем диапазоне скоростей. Это достигается благодаря использованию синхронного двигателя в высококачественном исполнении. Величина шага перемещения определяется разрешающей способностью датчика обратной связи, энкодера, а так же блоком управления. Стандартные сервоприводы могут обеспечить шаг в 0,036° т. е. 1/10 000 от оборота, и это на скоростях до 5 000 об/мин. Самые современные сервоприводы отрабатывают шаг в 1/2 500 000.

  • Высокая надежность
  • Относительно низкая цена
  • Высокие динамические характеристики
  • Отсутствие эффекта потери шагов
  • Высокая перегрузочная способность
  • Падение крутящего момента на высокой скорости
  • Низкая ремонтопригодность
  • Возможность эффекта потери шагов
  • Высокая цена, следствие использования сложной системы управления
  • Низкая ремонтопригодность
  • Требуется более бережное отношение к двигателю

* — Динамическая точность — максимальное отклонение реальной траектории перемещения инструмента от запрограммированной

8. Вывод

Сервопривод и шаговый двигатель не являются конкурентами, а каждый занимает свою определенную нишу. Сравним их на основе рынка станков с ЧПУ. Применение шаговых двигателей полностью оправданно для применения в недорогих станках с ЧПУ (в ценовой категории до 10—12 тыс. USD), предназначенных для обработки дерева, пластиков, ДСП, МДФ, легких металлов и других материалов средней скорости.Применение высококачественных сервоприводов необходимо в высокопроизводительном оборудовании, где главным критерием является производительность. Единственный «недостаток» хорошего сервопривода – это его высокая стоимость. К примеру, станок ATS-760 на шаговых приводах стоит 11 000 $, а эта же модель, но на сервоприводах стоит 17 500 $. Однако возможности получения высокостабильного или точного управления, широкий диапазон регулирования скорости, высокая помехоустойчивость, малые габариты и вес часто являются решающими факторами их применения. Добившись одинаковых качеств от сервопривода и шагового их стоимости станут соизмеримыми при однозначном лидерстве сервопривода.

Предыдущая статья Следующая статья

Печенька КИП-Сервис

© КИП-Сервис, 2024

350000, Краснодарский край, г. Краснодар, ул. им. Митрофана Седина, 145/1
ИНН 2308073661, КПП 231001001

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *