Что такое логический элемент компьютера
Перейти к содержимому

Что такое логический элемент компьютера

  • автор:

Логические элементы компьютера

Основные логические элементы реализуют 3 основные логические операции:

  • логическое умножение;
  • логическое сложение;
  • инверсию (отрицание).

Устройства компьютера, которые выполняют обработку и хранение информации, могут быть собраны из базовых логических элементов, у которых $2$ входа и $1$ выход. К логическим устройствам компьютера относятся группы переключателей, триггеры, сумматоры.

Связь между алгеброй логики и компьютерной техникой также лежит в двоичной системе счисления, которая используется в ЭВМ. Поэтому в устройствах ПК можно хранить и обрабатывать как числа, так и значения логических переменных.

Определение 1

Логический элемент компьютера – это часть электронной схемы, которая выполняет элементарную логическую функцию.

Статья: Логические элементы компьютера

Найди решение своей задачи среди 1 000 000 ответов

Переключательные схемы

В ЭВМ используются электрические схемы, которые состоят из большого количества переключателей. Переключатель, находясь в замкнутом состоянии ток пропускает, в разомкнутом – не пропускает. Работа таких схем удобно описывается при помощи алгебры логики. В зависимости от состояния переключателя можно регулировать получение или неполучение сигналов на выходах.

Вентили

Среди логических элементов компьютеров выделяют электронные схемы И, ИЛИ, НЕ, И–НЕ, ИЛИ–НЕ и другие (их называют вентили).

Эти схемы позволяют реализовать любую логическую функцию, которая описывает работу устройств ПК. Обычно вентили имеют $2–8$ входов и $1$ или $2$ выхода.

Для представления двух логических состояний ($1$ и $0$) в вентилях, входные и выходные сигналы имеют разные уровни напряжения. Например, $+3 \ B$ (вольт) для состояния $«1»$ и $0 \ B$ для состояния $«0»$.

У каждого логического элемента есть условное обозначение, выражающее его логическую функцию, но не указывающее на электронную схему, которая в нем реализована. Такой подход реализован для упрощения записи и понимания сложных логических схем.

«Логические элементы компьютера» ��
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Найди решение своей задачи среди 1 000 000 ответов

Работа логических элементов описывается таблицами истинности.

Триггер

Триггеры и сумматоры состоят из вентилей.

Триггер – важнейшая структурная единица оперативной памяти ПК и внутренних регистров процессора.

Определение 2

Триггер – логическая схема, которая способна хранить $1$ бит информации ($1$ или $0$). Строится на $2$-х элементах ИЛИ–НЕ или на $2$-х элементах И–НЕ.

Самый распространённый тип триггера – $RS$-триггер (Reset/Set), который имеет $2$ входа $S$ и $R$ и два выхода $Q$ и $\bar$. На каждый из входов $S$ и $R$ могут подаваться входные сигналы в виде кратковременных импульсов (рис.3): есть импульс – $1$, нет импульса – $0$.

Кратковременный импульс

Рисунок 3. Кратковременный импульс

Сумматор

Сумматоры широко применяются в арифметико-логических устройствах процессора и отвечают за суммирование двоичных разрядов.

Определение 3

Сумматор – логическая схема, которая способна суммировать 2 одноразрядных двоичных числа с переносом из предыдущего разряда.

Сумматор может находить применение и в других устройствах машины.

Для суммирования двоичных слов длиной от двух бит можно использовать последовательное соединение многоразрядных сумматоров, причём для двух соседних сумматоров выход переноса одного сумматора является входом для другого.

Пример реализации логической схемы

Алгоритм реализации:

  1. Определим количество переменных данного выражения, значит столько входов будет иметь схема. В данном случае это входы $A, B, C$.
  2. С помощью базовых логических элементов реализуются основные операции в порядке их следования: I – инверсия переменных $A, B, C$ реализуется логическим элементом «НЕ»; II – логическое умножение реализуется логическим элементом «И»; III – логическое сложение реализуется логическим элементом «ИЛИ».

На выходе каждого элемента прописывается логическое выражение, которое реализуется данным элементом, что позволяет осуществить обратную задачу, т.е. по готовой схеме составить логическое выражение, которое реализует данная схема.

Логические элементы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и их таблицы истинности

Логические элементы — это базовые компоненты цифровых систем, которые выполняют определенные логические операции над входными данными. Они являются основой для построения более сложных цифровых устройств, таких как микропроцессоры, запоминающие устройства и другие.

Логический элемент — элемент устройства или функциональная группа, реализующая функцию или систему функций двоичной алгебры логики.

Электронные логические схемы широко используются в калькуляторах, компьютерах, телефонных станциях и во всех приложениях, где задействованы системы с двумя состояниями.

Система с двумя состояниями имеет только два уровня в любой точке, они называются «включено» или «выключено», «да» или «нет», «вверх» или «вниз» и так далее. Логические элементы — это небольшие электронные подсистемы, которые выполняют логические решения НЕ, И, ИЛИ и т. д., встроенные в любое цифровое электронное оборудование.

Цифровые схемы — это тип электронных схем, в которых сигналы обычно имеют два уровня напряжения и обозначаются цифрами 0 и 1, что позволяет использовать алгебру логики, поэтому эти схемы называются логическими схемами.

Л огические схемы являются основными элементами современной электроники. Благодаря пониженной чувствительности к помехам цифровые схемы обеспечивают лучшие результаты и меньшую интенсивность отказов. Логические элементы можно использовать во многих электронных проектах.

Используя логические элементы и полагаясь на логическую алгебру, мы можем создавать и проектировать различные системы, такие как системы сигнализации, цифровые радиоприемники или даже компьютер.

Логические схемы включают логические элементы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ. Булевы функции, используемые в логических схемах, представляют собой математические модели логических схем.

Цифровые микросхемы на плате электронного устройства

Что такое логические элементы

Электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными, называется логическим элементом. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе — также получается в виде напряжения определенного уровня.

Операнды в данном случае подаются в двоичной системе счисления — на вход логического элемента поступают сигналы в форме напряжения высокого или низкого уровня, которые и служат по сути входными данными. Так, напряжение высокого уровня — это логическая единица 1 — обозначает истинное значение операнда, а напряжение низкого уровня 0 — значение ложное. 1 — ИСТИНА, 0 — ЛОЖЬ.

Логический элемент — элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления. Для всех видов логических элементов, независимо от их физической природы, характерны дискретные значения входных и выходных сигналов.

Все цифровые логические схемы можно отнести к одной из двух категорий: либо к комбинационным (также называемым комбинаторными), либо к последовательным логическим схемам.

Выходной логический уровень комбинационной схемы зависит только от текущих логических уровней на входах схемы. И наоборот, последовательные логические схемы имеют характеристику памяти, из-за чего выход последовательной схемы зависит не только от текущих входных условий, но и от текущего состояния выхода схемы.

Основным строительным блоком комбинационных схем является логический элемент. Тремя простейшими функциями логических элементов являются НЕ, И и ИЛИ.

Логический элемент — это базовый строительный блок логических схем, который выполняет логическую функцию. Обычно он имеет один или несколько входов и один выход. Значение на выходе логического члена является функцией входных значений. Используя логические элементы И, ИЛИ и НЕ, можно реализовать любую логическую схему и, следовательно, любую цифровую систему.

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных.

Логическая функция — это функция, которая возвращает логические значения для конечного числа входных параметров. Она используется в математической логике, в области теории управления, в цифровой и микропроцессорной технике. Параметры булевой функции являются булевыми переменными.

Логическую функцию можно задать с помощью словесного описания, таблицы истинности, аналитически в виде алгебраического выражения (логического уравнения) или графически с логическими символами.

С уществуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

Логические элементы реализуют элементарные логические функции. Они используются для построения логических схем большей сложности.

Логические элементы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и их таблицы истинности

В зависимости от устройства схемы элемента, от ее электрических параметров, логические уровни (высокие и низкие уровни напряжения) входа и выхода имеют одинаковые значения для высокого и низкого (истинного и ложного) состояний.

Интегральная микросхема

Традиционно логические элементы выпускаются в виде специальных радиодеталей — интегральных микросхем

Логические операции, такие как конъюнкция, дизъюнкция, отрицание и сложение по модулю (И, ИЛИ, НЕ, исключающее ИЛИ) — являются основными операциями, выполняемыми на логических элементах основных типов.

Используя логические элементы И, ИЛИ и НЕ, можно реализовать любую логическую схему и, следовательно, цифровую систему. Члены И и ИЛИ дополняют друг друга с помощью члена НЕ. Это значит, что их можно подменять друг другом удобным способом. Любая цифровая система может быть реализована только с помощью логических элементов И-ИЛИ или НЕ-ИЛИ или И и НЕ или ИЛИ и НЕ (всегда достаточно элементов с двумя входами).

Далее рассмотрим каждый из этих типов логических элементов более внимательно.

Логический элемент «И» — конъюнкция, логическое умножение, AND

«И» — логический элемент, выполняющий над входными данными операцию конъюнкции или логического умножения. Данный элемент может иметь от 2 до 8 (наиболее распространены в производстве элементы «И» с 2, 3, 4 и 8 входами) входов и один выход.

Условные обозначения логических элементов «И» с разным количеством входов приведены на рисунке. В тексте логический элемент «И» с тем или иным числом входов обозначается как «2И», «4И» и т. д. — элемент «И» с двумя входами, с четырьмя входами и т. д.

Таблица истинности для элемента 2И

Таблица истинности для элемента 2И показывает, что на выходе элемента будет логическая единица лишь в том случае, если логические единицы будут одновременно на первом входе И на втором входе. В остальных трех возможных случаях на выходе будет ноль.

На западных схемах значок элемента «И» имеет прямую черту на входе и закругление на выходе. На отечественных схемах — прямоугольник с символом «&».

Логический элемент «ИЛИ» — дизъюнкция, логическое сложение, OR

«ИЛИ» — логический элемент, выполняющий над входными данными операцию дизъюнкции или логического сложения. Он так же как и элемент «И» выпускается с двумя, тремя, четырьмя и т. д. входами и с одним выходом. Условные обозначения логических элементов «ИЛИ» с различным количеством входов показаны на рисунке. Обозначаются данные элементы так: 2ИЛИ, 3ИЛИ, 4ИЛИ и т. д.

Таблица истинности для элемента 2ИЛИ

Таблица истинности для элемента «2ИЛИ» показывает, что для появления на выходе логической единицы, достаточно чтобы логическая единица была на первом входе ИЛИ на втором входе. Если логические единицы будут сразу на двух входах, на выходе также будет единица.

На западных схемах значок элемента «ИЛИ» имеет закругление на входе и закругление с заострением на выходе. На отечественных схемах — прямоугольник с символом «1».

Логический элемент «НЕ» — отрицание, инвертор, NOT

«НЕ» — логический элемент, выполняющий над входными данными операцию логического отрицания. Данный элемент, имеющий один выход и только один вход, называют еще инвертором, поскольку он на самом деле инвертирует (обращает) входной сигнал. На рисунке приведено условное обозначение логического элемента «НЕ».

Таблица истинности для элемента НЕ

Таблица истинности для инвертора показывает, что высокий потенциал на входе даёт низкий потенциал на выходе и наоборот.

На западных схемах значок элемента «НЕ» имеет форму треугольника с кружочком на выходе. На отечественных схемах — прямоугольник с символом «1», с кружком на выходе.

Логический элемент «И-НЕ» — конъюнкция (логическое умножение) с отрицанием, NAND

«И-НЕ» — логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Другими словами, это в принципе элемент «И», дополненный элементом «НЕ». На рисунке приведено условное обозначение логического элемента «2И-НЕ».

Таблица истинности для элемента И-НЕ

Таблица истинности для элемента «И-НЕ» противоположна таблице для элемента «И». Вместо трех нулей и единицы — три единицы и ноль. Элемент «И-НЕ» называют еще «элемент Шеффера» в честь математика Генри Мориса Шеффера, впервые отметившего значимость этой логической операции в 1913 году. Обозначается как «И», только с кружочком на выходе.

Логический элемент «ИЛИ-НЕ» — дизъюнкция (логическое сложение) с отрицанием, NOR

«ИЛИ-НЕ» — логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Иначе говоря, это элемент «ИЛИ», дополненный элементом «НЕ» — инвертором. На рисунке приведено условное обозначение логического элемента «2ИЛИ-НЕ».

Таблица истинности для элемента ИЛИ-НЕ

Таблица истинности для элемента «ИЛИ-НЕ» противоположна таблице для элемента «ИЛИ». Высокий потенциал на выходе получается лишь в одном случае — на оба входа подаются одновременно низкие потенциалы. Обозначается как «ИЛИ», только с кружочком на выходе, обозначающим инверсию.

Логический элемент «исключающее ИЛИ» — сложение по модулю 2, XOR

«исключающее ИЛИ» — логический элемент, выполняющий над входными данными операцию логического сложения по модулю 2, имеет два входа и один выход. Часто данные элементы применяют в схемах контроля. На рисунке приведено условное обозначение данного элемента.

Изображение в западных схемах — как у «ИЛИ» с дополнительной изогнутой полоской на стороне входа, в отечественной — как «ИЛИ», только вместо «1» будет написано «=1».

Таблица истинности

Этот логический элемент еще называют «неравнозначность». Высокий уровень напряжения будет на выходе лишь тогда, когда сигналы на входе не равны (на одном единица, на другом ноль или на одном ноль, а на другом единица) если даже на входе будут одновременно две единицы, на выходе будет ноль — в этом отличие от «ИЛИ». Данные элементы логики широко применяются в сумматорах.

Логические элементы и их таблицы истинности

Логические элементы 2И, 2ИЛИ, НЕ, 2И-НЕ, 2ИЛИ-НЕ, исключающее ИЛИ, таблицы истинности, условные обозначения логических операций и контактно-релейные схемы

Логические схемы

Принципы работы логических схем на самом деле очень просты. Микроволновая печь, стиральная машина, механизм открывания гаражных ворот и компьютер в основном управляются логическими схемами, которые оценивают определенную ситуацию в соответствии с разработанной логической функцией.

Представим себе, к примеру, лифт, где необходимо следить, закрыта ли дверь, не перегружена ли она и не нажата ли кнопка выбора этажа и т. д. Вышеприведенные факты являются для нас так называемыми «входными переменными».

В соответствии с разработанной логической схемой он затем использует свои «выходные функции» для включения двигателя, подачи сигнала о перегрузке или срабатывания сигнализации при внезапной блокировке лифта, т. е. он автоматически управляет работой лифта.

Логическая зависимость «выходов» от «входов» решается внутренней структурой. Она разработана в соответствии с принципами алгебры логики и может быть решена как комбинационная или последовательная логическая схема. Реальная физическая реализация зависит только от наших возможностей.

Контроллер для управления лифтом в многоэтажном доме

Контроллер управления лифтом

Аппаратная и программная реализация логических схем

Любой логический элемент может быть реализован путем подходящего соединения транзисторов, диодов, резисторов и других компонентов. Часто можно встретить логические устройства в виде интегральных схем (например, серии 74хх), в которых затворы собраны из нескольких транзисторов.

В настоящее время дискретные логические элементы используются очень мало и заменяются логическими схемами более высокой степени интеграции, выполняющими более сложные логические функции. Однако эти функции по-прежнему реализуются из множества более простых схем.

Цифровые схемы позволяют обрабатывать цифровые сигналы просто и в то же время очень быстро. Автоматизация, робототехника, компьютеры, телекоммуникационное оборудование — вот области техники, в которых мы наблюдаем больше всего экспоненциальный рост, в основном за счет использования все новых и новых поколений цифровых схем.

С точки зрения конструкции и технологии все цифровые интегральные схемы можно разделить на биполярные, в которых основными элементами являются биполярные транзисторы и однополярные, называемые также МОП-схемами, где основные к омпоненты — МОП-транзисторы.

Просматривая каталоги производителей цифровых схем, можно легко заметить, что элементы И-НЕ являются самым широким предложением, потому что они чаще всего используются пользователями.

Логические элементы, как цифровые схемы с не очень сложной структурой, относятся к малогабаритным интегральным схемам, так называемым SSI (Small Scale Integration) — тип интеграции для цифровых схем, содержащих десятки транзисторов, обеспечивающих несколько логических элементов на кристалл.

Один чип микропроцессора содержит несколько миллионов транзисторов. Схемы с таким уровнем интеграции называются VLSI (Very Large Scale Integration).

В области управления логические элементы используются при проектировании логических схем, которые затем выполняются программируемыми логическими контроллерами. В этом случае логические элементы являются виртуальными, а выполнение выбранной логической функции обеспечивается программным алгоритмом.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Логические элементы и логические схемы компьютера. 10-й класс

РЕШЕНИЕ. Множество всех случаев, когда А истинно: p = 2, 4, 6, 8, 10,… Множество всех случаев, когда В истинно: p = 3, 6, 9,… Множество всех случаев, когда истинно А+ В: p = 2, 3, 4, 6, 8, 9, 10,…, т.е. объединение двух множеств.

    Учитель должен быть умным и терпеливым (только одновременное наличие двух качеств, ума и терпения, делает выражение истинным).
  1. Только умение и настойчивость приводят к достижению цели (достижение цели возможно только при одновременной истинности двух предпосылок – наличия и умения, и настойчивости).
  2. Высказывание А: «p делится на 5»; высказывание В: «p меньше 20». Чему равен результат логического умножения: А & В?

РЕШЕНИЕ. Множество всех случаев, когда А истинно: p = 5, 10, 15, 20, 25, … Множество всех случаев, когда В истинно: p = 1, 2, 3,…, 19. Множество всех случаев, когда истинно А & В: p = 5, 10, 15, т.е. пересечение двух множеств.

Примеры для повторения операции импликации

    Если выучить материал, то сдашь зачет (высказывание ложно только тогда, когда материал выучен, а зачет не сдан, ведь сдать зачет можно и случайно, например если попался единственный знакомый вопрос или удалось воспользоваться шпаргалкой).
  1. Высказывание А: «х делится на 9»; высказывание В: «х делится на 3». Операция означает следующее: «если число делится на 9, то оно делится и на 3».

При анализе этого примера можно перебрать следующие варианты:

o А – ложно, В – ложно. Можно найти такие числа, для которых истиной является высказывание: «если А – ложно, то и В – ложно». Например, х = 4, 17, 22…

o А – ложно, В – истинно. Можно найти такие числа, для которых истиной является высказывание: «если А – ложно, то и В – истинно». Например, х = 6, 12, 21…

o А – истинно, В – истинно. Можно найти такие числа, для которых истиной является высказывание: «если А – истинно, то и В – истинно». Например, х = 9, 18, 27…

o А – истинно, В – ложно. Невозможно найти такие числа, которые делились бы на 9, но не делились на 3, т.е. истинная предпосылка не может приводить к ложному результату импликации.

Примеры для повторения операции эквивалентности

Когда в зимний день светит солнце и «кусает» мороз, это значит, что атмосферное давление высокое.

Высказывание А: «сумма цифр, составляющих число х, делится на 3», высказывание В: «х делится на 3». Операция означает следующее: «число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3».

2.РЕАЛИЗАЦИЯ ЛОГИКИ ПРИ ПОМОЩИ ЭЛЕКТРОННЫХ СХЕМ

Можно начать урок с исторической справки.

С 1867 года американский логик Чарльз Сандерс Пирс ( в его честь названа одна из логических операций – «стрелка Пирса») работает над модификацией и расширением булевой алгебры. Пирс первым осознал, что бинарная логика имеет сходство с работой электрических переключательных схем. Электрический переключатель либо пропускает ток (что соответствует значению Истина), либо не пропускает (что соответствует значению Ложь). Позже Пирс даже придумал простую электрическую логическую схему, но так и не собрал ее.

Учитель предлагает учащимся самим воспроизвести возможный ход рассуждений Ч.Пирса.

Вопрос: Есть электрическое устройство, которым мы пользуемся каждый день. Оно реализует логическую операцию отрицания. Подумайте, что это за устройство?

Ответ: Выключатель. Если свет не горел, он его включает, если горел – выключает.

Вопрос: Вспомните Новый год и старую елочную гирлянду. Почему она была недолговечна?

Ответ: В старых гирляндах лампочки включались последовательно. Гирлянда горела только тогда, когда все лампочки были исправны. Стоило перегореть хотя бы одной, вся гирлянда не работала.

Вопрос: На какую логическую операцию это похоже?

Ответ: На логическое умножение.

Вопрос: А в современных гирляндах как подключаются лампочки?

Ответ: Параллельно. Гирлянда горит, если хотя бы одна лампочка исправна.

Вопрос: На какую логическую операцию это похоже?

Ответ: На логическое сложение.

Учитель подводит итоги диалога: подобно Пирсу, вы сейчас убедились, как хорошо реализуются логические операции в простейших схемах. В настоящее время существуют электронные схемы, реализующие все логические операции.

3. В КАКОМ ВИДЕ ЗАПИСЫВАЮТСЯ В ПАМЯТИ КОМПЬЮТЕРА И В РЕГИСТРАХ ПРОЦЕССОРА ДАННЫЕ И КОМАНДА

Существуют различные физические способы кодирования двоичной информации, но чаще всего единица кодируется более высоким уровнем напряжения, чем нуль (или наоборот).

4.ЧТО ТАКОЕ ЛОГИЧЕСКИЙ ЭЛЕМЕНТ КОМПЬЮТЕРА.

Как при строительстве дома применяют различного рода типовые блоки – кирпичи, рамы, двери и т.п., так и при разработке компьютера используют типовые электронные схемы. Каждая схема состоит из определенного набора типовых электронных элементов.

Электронным элементом называется соединение различных деталей, в первую очередь – диодов и транзисторов, а также резисторов и конденсаторов, в виде электрической схемы, выполняющей некоторую простейшую функцию.

Электронный элемент, реализующий логическую функцию, называется логическим элементом.

Логический элемент компьютера – это часть электронной логической схемы, которая реализует элементарную логическую функцию.

Тысячи микроскопических электронных переключателей в кристалле интегральной схемы сгруппированы в системы, выполняющие логические операции, т.е. операции с предсказуемыми результатами, и арифметические операции над двоичными числами. Соединенные в различные комбинации, логические элементы дают возможность компьютеру решать задачи, используя язык двоичных кодов.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и др. (называемые также вентилями), а также триггер, регистр, сумматор.

Триггер это логическая схема, способная сохранять одно из двух состояний до подачи нового сигнала на вход. Это, по сути, разряд памяти, способный хранить 1 бит информации.

Регистрэто устройство, состоящее из последовательности триггеров. Регистр предназначен для хранения многоразрядного двоичного числового кода, которым можно представлять и адрес, и команду, и данные.

Сумматорэто устройство, предназначенное для суммирования двоичных кодов.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния «1» и «0» в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению «истина» («1»), а низкий – значение «ложь («0»).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинностиэто табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значениями истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

6. ЧТО ТАКОЕ СХЕМЫ И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ.

Схема И реализует конъюнкцию двух или более логических значений.

Условное обозначение на структурных схемах схемы И с двумя входами представлено на рис.1, а таблица истинности в таблице 1.

Логические основы устройства компьютера

Базовые логические элементы реализуют рассмотренные выше три основные логические операции:

  • логический элемент «И» — логическое умножение;
  • логический элемент «ИЛИ» — логическое сложение;
  • логический элемент «НЕ» — инверсию.

Поскольку любая логическая операция может быть пред­ставлена в виде комбинации трех основных, любые устрой­ства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из «кирпичиков».

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс — логический смысл сигнала — 1, нет импульса — 0. На входы логического элемента поступают сигналы-зна­чения аргументов, на выходе появляется сигнал-значение функции.Преобразование сигнала логическим элементом задается таблицей состояния, которая фактически является таблицей истинности, соответствующей логической функции.

Логический элемент «И». На входы А и В логического элемента (рис. 3.1) подаются два сигнала (00, 01, 10 или 11). На выходе получается сигнал 0 или 1 в соответствии с таблицей истинности операции логического умножения.

Pис. 3.1 Логический элемент • «И»

Логический элемент «ИЛИ». На входы А и В логического элемента (рис. 3.2) подаются два сигнала (00, 01, 10 или 11). На выходе получается сигнал 0 или 1 в соответствии с таблицей истинности операции логического сложения.
Рис. 3.2 Логический элемент • «ИЛИ»

Логический элемент «НЕ». На вход А логического элемента (рис. 3.3) подается сигнал 0 или 1. На выходе получается сигнал 0 или 1 в соответствии с таблицей истинности инверсии

Рис. 3.3 Логический элемент • «НЕ»

Сумматор двоичных чисел

В целях максимального упрощения работы компьютера все многообразие математических операций в процессоре сводится к сложению двоичных чисел. Поэтому главной частью процессора являются сумматоры, которые как раз и обеспечивают такое сложение. Полусумматор. Вспомним, что при сложении двоичных чисел в каждом разряде образуется сумма и при этом возможен перенос в старший разряд. Введем обозначения слагаемых (А, В), переноса (Р) и суммы (S). Таблица сложения одноразрядных двоичных чисел с учетом переноса в старший разряд выглядит следующим образом:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *