Что является основной характеристикой конденсатора
Перейти к содержимому

Что является основной характеристикой конденсатора

  • автор:

Что является основной характеристикой конденсатора

Конденсаторы, как и резисторы, наиболее распространённые компоненты в принципиальных схемах. Их основное назначение – распределённая по электрической схеме фильтрация (сглаживание) пульсаций напряжений питания, а также использование как времязадающих элементов в генераторах и фильтрах.

Происхождение названия от латинского condensatio – накапливать. Это устройство для накопления электрических зарядов и энергии электрического поля W=C*U 2 / 2, где С символ основной характеристики конденсатора – электрической ёмкости (ёмкости). Этой же латинской буквой С принято обозначать конденсатор в электрических схемах.

Исторический образ конденсатора – две параллельно размещённые металлические пластины (обкладки) с диэлектрической прослойкой (показан на рисунке 1.18).

Исходный образ электрического конденсатора

Чем больше поверхности обкладок и меньше расстояние между пластинами, тем выше значение ёмкости конденсатора. Диэлектрик, расположенный между пластинами увеличивает ёмкость. В качестве диэлектрика может использоваться бумага, слюда, полимерная плёнка, керамика и др. Типовое расчётное соотношение для ёмкости конденсатора выглядит так:

где ɛ0≈ 8,85·10 -3 пФ/мм диэлектрическая проницаемость вакуума (диэлектрическая постоянная), ɛ — относительная диэлектрическая проницаемость использованного диэлектрика, S – площадь обкладок [мм 2 ], d – расстояние между обкладками (толщина диэлектрика) [мм] .

Значения относительной диэлектрической проницаемости для некоторых диэлектриков представлены в таблице 1.7.

Таблица 1.7 – Значения относительной диэлектрической проницаемости для некоторых диэлектриков

Диэлектрик

ɛ

На принципиальных электрических схемах конденсаторы обозначаются графемой (показано на рисунке 1.19 слева):

Символические обозначения конденсаторов в принципиальных схемах

Примечание – В некоторых случаях общепринятую в принципиальных схемах графему заменяют более сложной моделью (показано на рисунке 1.19 справа). Такая замена обоснована для конденсаторов с диэлектриком плохого качества.

Резистор Rут на схеме называется сопротивлением утечки и его типовое значение можно найти в документации.

Утечка – это явление перетекания заряда с одной обкладки на другое через не идеальный диэлектрик: если заряженный конденсатор отключить от нагрузок, то через некоторое время он разрядится. Время разряда зависит от качества диэлектрика: чем оно выше, тем дольше происходит саморазряд.

В настоящее время постоянные конденсаторы имеют более сложные конструктивно-технологические решения. При этом конденсаторы различают:

  • по типу диэлектрика: керамические, слюдяные, плёночные, электролитические и др.;
  • по конструктивному решению: конденсаторы для монтажа в отверстия (выводные), для поверхностного монтажа (чип-конденсаторы);
  • по рабочему напряжению, габаритам, температурному коэффициенту ёмкости и др.

Конструктивные разновидности современных конденсаторов, применяемых в электрических цепях с напряжениями до нескольких сотен вольт (низкие напряжения) представлены на рисунке 1.20.

Конструктивные разновидности (постоянных) конденсаторов

Наиболее широкое применение в настоящее время находят керамическиеи электролитические конденсаторы. Они могут монтироваться в отверстия или предназначены для поверхностного монтажа. Типовые сравнительные характеристики конденсаторов представлены в таблице 1.8.

Примечание – Следует иметь в виду, что электролитические конденсаторы при подключению требуют соблюдения полярности. Для этого на корпусе конденсатора рядом с одним из контактов проставлен знак + (анод) или другой отличительный символ.

Таблица 1.8 – Типовые характеристики современных конденсаторов

Типовые характеристики современных конденсаторов

Основное, широко используемое в электротехнике соотношение, связанное с электрической ёмкостью:

где Q – заряд, накопленный в конденсаторе (измеряется в кулонах), U – напряжение, до которого заряжен конденсатор.

На практике применяют постоянные, переменные и подстроечные конденсаторы (представлены на рисунке 1.21).

Типовые конструкции постоянных, переменных и подстроечных конденсаторов

Постоянными принято называть конденсаторы, основной параметр которых – электрическая ёмкость, должен поддерживаться неизменным. Любые отклонения от расчётных значений – нежелательная погрешность.

Переменный и подстроечный конденсаторы имеют конструктивные особенности, позволяющие изменять ёмкость с помощью инструмента или вручную.

Постоянные конденсаторы

Основной параметр постоянного конденсатора – номинальная ёмкость, может меняться во время эксплуатации, как и у резистора, под воздействием различных факторов. Разница заключается в том, что скрупулёзно следить за такими изменениями обычно не требуется: требования к точности конденсаторов не высоки.

Так, например, используемые в качестве фильтров питания электролитические и керамические конденсаторы могут иметь допуск номинала ± 30% и более.

С максимальной точностью ± 1% изготавливаются некоторые керамические конденсаторы, ёмкость которых ограничена значением 100 нФ. Они используются в качестве времязадающих компонентов при создании активных электрических фильтров или генераторов. Другие важные их отличия – высокая температурная стабильность и большая цена.

Следует иметь в виду, что ёмкость электролитических конденсаторов может существенно меняться с изменением температуры и с течением времени они сильно деградируют (высыхают).

Конденсаторы выпускаются в соответствии с рядом Е24, но часто имеют более ограниченный набор номиналов, который задаётся в технических описаниях.

Цветовая маркировка конденсаторов похожа на аналогичную для резисторов, однако в отличие от чип-резисторов, чип-конденсаторы обычно не имеют маркировки!

Типовые расчётные соотношения

  1. Выражение для накопленного в конденсаторе заряда
  1. Последовательное соединение конденсаторов:

Последовательное соединение конденсаторов

  1. Параллельное соединение конденсаторов:

Параллельное соединение конденсаторов

  1. Переходный процесс в RC-цепочке:

Переходный процесс в RC-цепочке

Переменные и подстроечные конденсаторы

Переменные (регулирующие) конденсаторы предназначены для интенсивной регулировки так, как это делалось при настройке частоты вещания в старых радиоприёмниках. Это конденсаторы с воздушным диэлектриком сегодня используются редко.

Подстроечный конденсатор это переменный конденсатор малой ёмкости, который обычно используется для точной настройки режимов работы электрических схем. Обычно, подстроечный конденсатор используется однократно – в ходе процедуры настройки, или изредка.

После манипуляций настройки регулировочный винт контрится (закрашивается), чтобы во время дальнейшей эксплуатации изделия его положение не сдвинулось от случайных механических воздействий (например, вибраций). Количество подстроек у таких конденсаторов лимитировано несколькими десятками полных поворотов.

Переменные и подстроечные конденсаторы в современной электронике применяются редко. Широко их используют только в радиотехнике. Внешний вид таких конденсаторов представлен на рисунке 1.22.

Переменные и подстроечные конденсаторы

Средства измерений ёмкости конденсаторов

Colibri. Измеритель сопротивления, ёмкости, индуктивности.

Диапазоны основных режимов измерений мультиметра Colibri представлены в таблице 1.9.

Таблица 1.9 – Диапазоны основных режимов измерений мультиметра Colibri

Параметры

Значение

Погрешность измерения

Электрические конденсаторы. Определение, классификация, применение.

Электрические конденсаторы 3

Конденсатор – это устройство, которое может накапливать электрический заряд при подключении к постоянному источнику электроэнергии. Иллюстрацией простейшего конденсатора могут послужить две металлические пластинки, разделенные диэлектриком.

Такое свойство этих простых электрических устройств используют в фотовспышках, некоторых видах генераторов, электромагнитных ускорителях, компьютерной памяти. Они бывают разных видов и типов.

Классификация конденсаторов

Эти электрические устройства отличаются типом диэлектрика и способностью к изменению своей емкости. В конденсаторах используют следующие типы диэлектриков:

• твердые минералы (керамика, слюда, стекло);

• твердые материалы органического происхождения (пленка, бумага);

• аноды из танталовой, ниобиевой, алюминиевой фольги.

Емкость конденсаторов может быть как стабильной, так и переменной. Также существует промежуточное звено – подстроечные конденсаторы. Их емкость регулируется только один раз, перед началом эксплуатации оборудования.

Основные характеристики

Несмотря на свое разнообразие, все конденсаторы обладают схожим набором характеристик. Основной параметр – это емкость. Емкость характеризует размер электрического заряда, который способен эффективно накопить конденсатор. Несколько конденсаторов можно объединять с помощью параллельного соединения. Такая система будет повышенной итоговой емкостью. Она будет равна общей сумме емкостей всех отдельных составных частей системы.

Важно выбрать правильно емкость конденсатора:

На практике чаще используют термин удельной емкости. Эта характеристика показывает возможность накопления электрического заряда на единицу веса устройства.

Еще один важный параметр – энергетическая плотность. Чем больше конденсатор, тем она выше. Этот параметр играет важную роль в системах, где требуется мгновенное высвобождение энергии (пушка Гаусса, фотовспышка).

Номинальное напряжение конденсатора, говорит об комфортных условиях работы этого электрического устройства. Только при номинальном уровне напряжения можно гарантировать работу конденсатора на протяжении всего срока службы. Значение этой характеристики также зависит и от температуры окружающего пространства. Чем она больше, тем ниже допустимое напряжение.

Если конденсатор эксплуатировать в условиях повышенного напряжения, то возможно его разрушение.

Преимущества и недостатки разных видов конденсаторов

Использование органического диэлектрика позволяет создавать недорогую и эффективную продукцию. Такие конденсаторы обладают следующими преимуществами:

• стабильные и высокие электрические характеристики при соблюдении небольших габаритов;

• небольшие потери энергии;

• выдерживают высокие токи;

• не содержат редких или драгоценных металлов – снижается стоимость;

• большое разнообразие форм и размеров.

Бумажные и пленочные конденсаторы, пожалуй, самые распространенные устройства из этой группы.

Конденсаторы, в которых используется твердый неорганический диэлектрик обычно дороже своих органических «собратьев». Это с лихвой компенсируется их лучшей температурной, радиационной, химической стойкостью. В целом такие устройства намного надежнее.

Электрические конденсаторы 1

Независимо от типа конденсатора, схемы подключения у них одинаковые:

Сфера применения

Сложно назвать хотя бы одну область электротехники, где не используются конденсаторы. Так, практически ни одно современное бытовое устройство не обходится без танталовых конденсаторов. Они применяются в:

• автомобилях (ABS, управление фарами, контроль уровня масла, дистанционное открытие/закрытие дверей, навигационная система);

• компьютерах, ноутбуках, телефонах;

• «умной» бытовой технике (стиральные машины, кофеварки, кондиционеры, посудомойки).

Ионистры (конденсаторы с двойным электрическим слоем) нужны в:

• автомобилях (стартер, система запирания дверей);

• системах аварийного освещения;

• элементах, которые используют солнечную энергию.

Без конденсаторов не обходятся ускорители заряженных частиц, лазеры, электромагнитные усилители. Эти же устройства могут ограничивать силу тока в цепи или осуществлять пуск асинхронного электродвигателя. Конденсаторы – один из «китов» современной электротехники.

Конденсатор

Слева — конденсаторы для поверхностного монтажа; справа — конденсаторы для объёмного монтажа; сверху — керамические; снизу — электролитические.

Различные конденсаторы для объёмного монтажа

Конденса́тор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

История

В 1745 году в Лейдене немецкий физик Эвальд Юрген фон Клейст и голландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку».

Свойства конденсатора

Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течет, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора.

В терминах метода комплексных амплитуд конденсатор обладает комплексным импедансом

~Z_C = \frac<1></p>
<p>~» width=»» height=»» />,</p>
<p>где <img decoding=— мнимая единица, ~\omega— частота [1] протекающего синусоидального тока, ~C— ёмкость конденсатора. Отсюда также следует, что реактивное сопротивление конденсатора равно: ~X_C = -\frac<1><\omega C>» width=»» height=»» />. Для постоянного тока частота равна нулю, следовательно, реактивное сопротивление конденсатора бесконечно (в идеальном случае).</p>
<p>При изменении частоты изменяются диэлектрическая проницаемость диэлектрика и степень влияния паразитных параметров — собственной индуктивности и сопротивления потерь. На высоких частотах любой конденсатор можно рассматривать как последовательный колебательный контур, образуемый ёмкостью <img decoding=, собственной индуктивностью ~L_Cи сопротивлением потерь ~R_n.

~f_p = \frac <1></p>
<p> >» width=»» height=»» /></p>
<p>При <img decoding=конденсатор в цепи переменного тока ведёт себя как катушка индуктивности. Следовательно, конденсатор целесообразно использовать лишь на частотах ~f &lt; f_p, на которых его сопротивление носит ёмкостный характер. Обычно максимальная рабочая частота конденсатора примерно в 2—3 раза ниже резонансной.

Конденсатор может накапливать электрическую энергию. Энергия заряженного конденсатора:

 E = <C U^2 \over 2></p>
<p> » width=»» height=»» /></p>
<p><img decoding=

где — напряжение (разность потенциалов), до которого заряжен конденсатор.

Обозначение конденсаторов на схемах

В России условные графические обозначения конденсаторов на схемах должны соответствовать ГОСТ 2.728-74 [2] либо международному стандарту IEEE 315-1975:

Обозначение
по ГОСТ 2.728-74
Описание
Конденсатор постоянной ёмкости
Поляризованный конденсатор
Подстроечный конденсатор переменной ёмкости

На электрических принципиальных схемах номинальная ёмкость конденсаторов обычно указывается в микрофарадах (1 мкФ = 10 6 пФ) и пикофарадах, но нередко и в нанофарадах. При ёмкости не более 0,01 мкФ, ёмкость конденсатора указывают в пикофарадах, при этом допустимо не указывать единицу измерения, т.е. постфикс «пФ» опускают. При обозначении номинала ёмкости в других единицах указывают единицу измерения (пикоФарад). Для электролитических конденсаторов, а также для высоковольтных конденсаторов на схемах, после обозначения номинала ёмкости, указывают их максимальное рабочее напряжение в вольтах (В) или киловольтах (кВ). Например так: «10 мк x 10 В». Для переменных конденсаторов указывают диапазон изменения ёмкости, например так: «10 – 180». В настоящее время изготавливаются конденсаторы с номинальными ёмкостями из десятичнологарифмических рядов значений Е3, Е6, Е12, Е24, т.е. на одну декаду приходится 3, 6, 12, 24 значения, так, чтобы значения с соответствующим допуском (разбросом) перекрывали всю декаду.

Характеристики конденсаторов

Основные параметры

Ёмкость

Основной характеристикой конденсатора является его ёмкость. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками ( q = CU ). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Однако существуют конденсаторы с ёмкостью до десятков фарад.

Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью ~Sкаждая, расположенных на расстоянии ~dдруг от друга, в системе СИ выражается формулой: C = \frac<\varepsilon \varepsilon_0 S> ~» width=»» height=»» />, где <img decoding=— относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (эта формула справедлива, лишь когда ~dмного меньше линейных размеров пластин).

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

~C = \sum_<i=1>^N C_i» width=»» height=»» /> или <img decoding=

Если у всех параллельно соединённых конденсаторов расстояние между обкладками и свойства диэлектрика одинаковы, то эти конденсаторы можно представить как один большой конденсатор, разделённый на фрагменты меньшей площади.

При последовательном соединении конденсаторов заряды всех конденсаторов одинаковы. Общая ёмкость батареи последовательно соединённых конденсаторов равна

Изображение:Capacitorsseries.png

C = \frac^N 1/C_i>» width=»» height=»» /> или <img decoding=

Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения.

Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов.

Удельная ёмкость

Конденсаторы также характеризуются удельной ёмкостью — отношением ёмкости к объёму (или массе) диэлектрика. Максимальное значение удельной ёмкости достигается при минимальной толщине диэлектрика, однако при этом уменьшается его напряжение пробоя.

Номинальное напряжение

Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах.

Номинальное напряжение зависит от конструкции конденсатора и свойств применяемых материалов. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Для многих типов конденсаторов с увеличением температуры допустимое напряжение снижается.

Полярность

Конденсаторы, разрушившиеся без взрыва из-за температуры и напряжения, не соответствующих рабочим.

Многие конденсаторы с оксидным диэлектриком (электролитические) функционируют только при корректной полярности напряжения из-за химических особенностей взаимодействия электролита с диэлектриком. При обратной полярности напряжения электролитические конденсаторы обычно выходят из строя из-за химического разрушения диэлектрика с последующим увеличением тока, вскипанием электролита внутри и, как следствие, с вероятностью взрыва корпуса.

Взрывы электролитических конденсаторов — довольно распространённое явление. Основной причиной взрывов является перегрев конденсатора, вызываемый в большинстве случаев утечкой или повышением эквивалентного последовательного сопротивления вследствие старения (актуально для импульсных устройств). Для уменьшения повреждений других деталей и травматизма персонала в современных конденсаторах большой ёмкости устанавливают клапан или выполняют насечку на корпусе (часто можно заметить её в форме буквы X, K или Т на торце). При повышении внутреннего давления открывается клапан или корпус разрушается по насечке, испарившийся электролит выходит в виде едкого газа, и давление спадает без взрыва и осколков.

Паразитные параметры

Реальные конденсаторы, помимо ёмкости, обладают также собственными сопротивлением и индуктивностью. С высокой степенью точности, эквивалентную схему реального конденсатора можно представить следующим образом:

Электрическое сопротивление изоляции конденсатора — r

Сопротивление изоляции — это сопротивление конденсатора постоянному току, определяемое соотношением r = U / Iут , где U — напряжение, приложенное к конденсатору, Iут — ток утечки.

Эквивалентное последовательное сопротивление — R

Эквивалентное последовательное сопротивление (ЭПС, англ. ESR ) обусловлено главным образом электрическим сопротивлением материала обкладок и выводов конденсатора и контакта(-ов) между ними, а также потерями в диэлектрике. Обычно ЭПС возрастает с увеличением частоты тока, протекающего через конденсатор.

В большинстве случаев этим параметром можно пренебречь, но иногда (напр., в случае использования электролитических конденсаторов в фильтрах импульсных блоков питания) достаточно малое его значение может быть жизненно важным для надёжности устройства (см., напр., Capacitor plague (англ.) ).

Эквивалентная последовательная индуктивность — L

Эквивалентная последовательная индуктивность обусловлена, в основном, собственной индуктивностью обкладок и выводов конденсатора. На низких частотах (до единиц килогерц) обычно не учитывается в силу своей незначительности.

Тангенс угла потерь

~\rm<tg></p>
<p>Тангенс угла потерь — отношение мнимой и вещественной части комплексной диэлектрической проницаемости. < \left( \delta \right) >=\dfrac>>=\frac<\omega\varepsilon_>» width=»» height=»» /></p>
<p>Потери энергии в конденсаторе определяются потерями в диэлектрике и обкладках. При протекании переменного тока через конденсатор векторы напряжения и тока сдвинуты на угол <img decoding=— угол диэлектрических потерь. При отсутствии потерь ~\delta = 0. Тангенс угла потерь определяется отношением активной мощности Pа к реактивной Pр при синусоидальном напряжении определённой частоты. Величина, обратная  ~ \mathrm<tg>(\delta)» width=»» height=»» />, называется добротностью конденсатора. Термины добротности и тангенса угла потерь применяются также для катушек индуктивности и трансформаторов.</p>
<h5>Температурный коэффициент ёмкости (ТКЕ)</h5>
<p>ТКЕ — относительное изменению емкости при изменении температуры окружающей среды на один градус Цельсия (Кельвина). Таким образом значение ёмкости от температуры представляется линейной формулой:</p>
<p><img decoding=

Стандартные значения емкости конденсаторов

Если взять любой радиоэлектронный прибор, например, резистор, диод, транзистор, стабилитрон и снять его характеристики либо измерить параметры высокоточным измерительным прибором, то они будут иметь некоторые отклонения от заявленных номинальных значений. Такое отклонение от указанных параметров вызвано технологическим процессом и нормируется производителем. Дело в том, что на изготовление любого устройства или его отдельного компонента влияет много факторов, которые невозможно учесть и скомпенсировать. Даже лист бумаги, формата А4, имеет некоторые отклонения от заданных размеров, но тем не менее это никак не сказывается на их применении.

Аналогично обстоят дела и с емкостью. Если измерить ее в нескольких накопителей одинакового номинала, то можно заметить небольшую разницу. Эта разница строго нормирована и называется допустимым отклонением емкости от номинального значения. Она измеряется в процентах, значения которых соответствуют классам точности.

Классы точности конденсаторов

В зависимости от класса точности и допустимого отклонения производятся стандартные значения емкости, то есть стандартные номиналы конденсаторов. Емкость в приведенной ниже таблице исчисляется пикофарадоми. Любое значение из таблицы может быть умножено на 0,1 или 1 или 10 и т.д.

Номиналы конденсаторов

Температурный коэффициент емкости

Протекание электрического тока через любой радиоэлектронный элемент вызывает его нагрев, ввиду неизбежного наличия сопротивления. Чем больше ток и выше сопротивление, тем интенсивнее нагревается прибор. Такое явление в большинстве случаев является вредным и может привести к изменению параметров схемы, а соответственно и нарушить режим работы всего устройства. Поэтому нагрев радиоэлектронных элементов всегда учитывается при проектировании изделия. Характеристики конденсаторов также склонны изменятся с изменением температуры и с этим обязательно нужно считаться. Для этого введен температурный коэффициент емкости, сокращенно ТКЕ.

ТКЕ показывает, насколько отклоняется емкость конденсатора от номинального значения с ростом температуры. Номинальное значение емкости накопителя приводится для температуры окружающей среды +20 С.

Рост температуры может вызвать как рост емкости, так и ее уменьшение. В зависимости от этого различают конденсаторы с положительным и отрицательным температурным коэффициентом емкости.

Следует знать, чем меньше значение ТКЕ, тем более стабильными характеристиками обладает конденсатор. Особое внимание уделяют ТКЕ разработчик измерительного оборудования высокого класса точности, где критичны значительные отклонения характеристик любого радиоэлектронного элемента.

Тангенс угла потерь

Потери, неизбежно возникающие при работе конденсатора, главным образом определяются свойствами диэлектрика, расположенного между обкладками накопителя, и характеризуются тангенсом угла потерь tg δ. Производители стремятся снизить значение угла tg δ и за счет этого улучшить характеристики конденсаторов. Поэтому наибольшее применение получила специальная керамика, обладающая минимальным тангенсом угла потерь. Обратной величиной тангенса угла потерь конденсатора является добротность, равная QC=1/tgδ. Конденсаторы высокого качества обладают добротностью свыше тысячи единиц.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *