Что такое плата ардуино
Перейти к содержимому

Что такое плата ардуино

  • автор:

Плата Arduino Uno – описание, схема, распиновка

Arduino Uno – плата от компании Arduino, построенная на микроконтроллере ATmega 328.

Плата имеет на борту 6 аналоговых входов, 14 цифровых выводов общего назначения (могут являться как входами, так и выходами), кварцевый генератор на 16 МГц, два разъема: силовой и USB, разъем ISCP для внутрисхемного программирования и кнопку горячей перезагрузки устройства. Для стабильной работы плату необходимо подключить к питанию либо через встроенный USB Разъем, либо подключив разъем питания к источнику от 7 до 12В. Через переходник питания плата также может работать и от батареи формата Крона.

Основное отличие платы от предыдущих – для взаимодействия по USB Arduino Uno использует отдельный микроконтроллер ATmega8U2. Прошлые версии Arduino использовали для этого микросхему программатора FTDI.

Несложно догадаться, что благодаря своему итальянскому происхождению, слова “Arduino” и “Uno” взяты именно из этого языка. Компания назвалась “Arduino” в честь короля Италии 11 века Ардуина, а Уно переводится с итальянского как “первый”.

Arduino Uno R3 (ATmega 328P)

Arduino Uno R3 (ATmega 328P)

Arduino Uno R3 (ATmega 328P)

Arduino Uno R3 (ATmega 328P)

Размеры и габариты платы

Печатная плата Arduino Uno является Open-Hardware, поэтому все ее характеристики доступны в открытом доступе.

Длина и ширина платы составляют 69 мм x 53 мм.

Силовой и USB разъемы выступают за границы печатной платы на 2 мм.

Расстояние между выводами соответствует стандарту 2.54 мм, однако расстояние между 7 и 8 контактами составляет 4 мм.

Разъемы питания

Плата Arduino Uno имеет на борту 3 способа подключения питания: через USB, через внешний разъем питания и через разъем Vin, выведенный на одну из гребенок сбоку. Платформа имеет на борту встроенный стабилизатор, позволяющий не только автоматически выбирать источник питания, но и выравнивать ток до стабильных 5 вольт, необходимых контроллеру для работы.

Внешнее питание можно подавать как напрямую от USB порта компьютера, так и от любого AC/DC блока питания через разъем питания или USB.

На плате предусмотрено несколько выводов, позволяющих запитывать от нее подключенные датчики, сенсоры и актуаторы. Все эти выводы помечены:

  • Vin – вход питания, используется для получения питания от внешнего источника. Через данных вывод происходит только подача питания на плату, получить оттуда питание для внешних устройств невозможно. На вход Vin рекомендуется подавать напряжение в диапазоне от 7В до 20В, во избежании перегрева и сгорания встроенного стабилизатора.
  • 5V – источник пятивольтового напряжения для питания внешних устройств. При получении питания платой из любых других источников (USB, разъем питания или Vin) на этом контакте вы всегда сможете получить стабильное напряжение 5 вольт. Его можно вывести на макетную плату или подать напрямую на необходимое устройство.
  • 3V3 – источник 3.3 вольтового напряжения для питания внешних устройств. Работает по такому-же принципу, что и контакт 5V. С данной ножки также можно вывести напряжение на макетную плату, либо подать на необходимый датчик/сенсор напрямую.
  • GND – контакт для подключения земли. Необходим для создания замкнутой цепи при подключении к контактам Vin, 5V или 3V3. Во всех случаях ножку GND необходимо выводить как минус, иначе цепь не будет замкнута и питание (что внешнее, что внутреннее) не подасться.

Характеристики памяти

Платформа Arduino Uno имеет на борту микроконтроллер ATmega328, который обладает Flash, SRAM и EEPROM памятью.

  • FLASH – 32kB, из которых 0.5kB используется для хранения загрузчика
  • SRAM (ОЗУ) – 2kB
  • EEPROM – 1kB (доступна с помощью библиотеки EEPROM)

Arduino Uno распиновка

Arduino Uno распиновка

Принципиальная схема Arduino Uno R3

Принципиальная схема Arduino Uno R3

Контакты ввода-вывода и интерфейсы

На плате выведены 14 цифровых пинов (контактов), любой из которых может работать как на вывод информации, так и на ввод. Для этого в коде программ применяются специальные функции:

Функция pinMode служит для задания режима работы контакта, будет-ли он работать на выход или на вход. В данной функции задается номер контакта, которым мы в дальнейшем собираемся управлять.

digitalRead()

Функция считывает текущее значение с заданного контакта – его значение может быть HIGH или LOW.

digitalWrite()

Функция передает определенное значение на заданный контакт – оно может быть HIGH или LOW.

Все выводы обладают пятивольтовой логикой, то есть выдают логическую единицу как напряжение 5В.

Каждый вывод платы имеет нагрузочный резистор номиналом 20-50 кОм и может пропускать до 40 мА, но по умолчанию все они отключены.

Также, на контактных площадках Arduino Uno выведены специальные интерфейсы подключения различных цифровых устройств:

Аналоговые входы: контакты A0, A1, A2, A3, A4, A5

Arduino Uno имеет на своей платформе 6 аналоговых входов с разрешением 10 Бит на каждый вход. Данное разрешение говорит нам о том, что сигнал, приходящий на него, можно оцифровать в диапазоне от 0 до 1024 условных значений.

Считывать значения с данных контактов можно функцией analogRead(), а передавать значения – функцией analogWrite().

Так как Arduino Uno обладает пятивольтовой логикой, то и значение будет находиться в диапазоне от 0 до 5 вольт, однако при помощи функции analogReference() можно изменять верхний предел.

Последовательный UART интерфейс: контакты 0 (RX) и 1 (TX)

Данные выводы используются для обмена данными по протоколу UART. Контакт RX используется для получения данных, а контакт TX – для их отправки. Эти выводы подключены к соответствующим контактам последовательной шины схемы ATmega8U2 USB-to-TTL, выступающей в данном контексте в роли программатора.

Внешнее прерывание: контакты 2 и 3

Данные контакты могут конфигурироваться на вызов различных прерываний, когда программа останавливает выполнение основного кода и производит выполнение кода прерывания.

Вызов прерывания может быть задан по-разному:

  • на младшем значении
  • на переднем или заднем фронте
  • при изменении значения

Более подробно прерывания описаны в отдельной статье нашей Вики.

ШИМ: контакты 3, 5, 6, 9, 10, и 11

Любой из контактов 3, 5, 6, 9, 10, и 11, может генерировать сигнал Широтно-импульсной модуляции (ШИМ, PWM) с разрешением 8 Бит. Для этого в коде программы используется функция analogWrite().

SPI интерфейс: контакты 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK)

С помощью данных контактов происходит подключение периферии, работающей через интерфейс SPI. Для работы с данным интерфейсом в среде Arduino IDE предусмотрена отдельная библиотека с одноименным названием.

I2C интерфейс: контакты 4 (SDA) и 5 (SCL)

При помощи данных контактов к Arduino можно подключать внешние цифровые устройства, умеющие общаться по протоколу I2C. Для реализации интерфейса в среде Arduino IDE присутствует библиотека Wire.

Встроенный светодиод: контакт 13

Для проверки вашего кода по ходу его написания, самый удобный способ индикации – встроенный светодиод. Подав значение HIGH на 13 контакт, он загорается на плате красным цветом, тем самым показывая, что условие вашей программы выполнилось (или наоборот, что-то пошло не так). 13 контакт удобно использовать в коде программы для проверки ошибок и отладки.

Кстати, хотим заметить, что последовательно к 13-ому контакту подключен резистор на 220 Ом, поэтому не стоит использовать его для вывода питания ваших устройств.

Дополнительные контакты: AREF и RESET

Помимо всех вышеперечисленных, на платформе Uno имеется еще 2 дополнительных контакта.

AREF

Данный контакт отвечает за определение опорного напряжения аналоговых входов платформы. Используется только с функцией analogReference().

RESET

Данный контакт необходим для аппаратной перезагрузки микроконтроллера. При подаче сигнала низкого уровня (LOW) на контакт Reset, происходит перезагрузка устройства.

Данный контакт обычно соединен с аппаратной кнопкой перезагрузки, установленной на плате.

Связь с внешним миром

Для осуществления связи с внешними устройствами (компьютером и другими микроконтроллерами) на плате существует несколько дополнительных устройств.

На контактах 0 (RX) и 1 (TX) контроллер ATmega328 поддерживает UART – последовательный интерфейс передачи данных. ATmega8U2, выполняющий на плате роль программатора, транслирует этот интерфейс через USB, позволяя платформе общаться с компьютером через стандартный COM-порт. Прошивка, установленная в контроллер ATmega8U2, имеет на борту стандартные драйверы USB-COM, поэтому для подключения не потребуется никаких дополнительных драйверов.

Внимание! На платах китайского производства, вместо контроллера ATmega8U2 используется другой программатор – CH340G, который не распознается Windows в автоматическом режиме. Для него необходимо установить дополнительный драйвер, о чем подробно написано в нашем блоге – Установка драйверов микросхемы CH340G для Arduino.

При помощи мониторинга последовательной шины, называемого Serial Monitor, среда Arduino IDE посылает и получает данные от Arduino. При обмене данными на плате видно мигание светодиодов RX и TX. При использовании UART-интерфейса через контакты 0 и 1, светодиоды не мигают.

Плата может взаимодействовать по UART-интерфейсу не только через аппаратным, но и через программным способом. Для этого в среде Arduino IDE предусмотрена библиотека SoftwareSerial.

Также, на плате предусмотрены выводы основных интерфейсов взаимодействия с периферией: SPI и I2C (TWI).

Среда программирования Arduino IDE

Платформа Arduino Uno, как и все другие Arduino-совместимые платформы, программируется в среде Arduino IDE. Для работы с ней в настройках программы необходимо выбрать нужную платформу. Это можно сделать в верхнем меню -> Tools -> Boards -> Arduino UNO.

Выбор микроконтроллера зависит от того, какой стоит именно на вашей плате. Обычно это ATmega328.

Плата как правило поставляется уже прошитая необходимым загрузчиком и должна определяться системой в автоматическом режиме (за исключением плат на основе программатора CH340G). Связь микроконтроллера с компьютером осуществляется стандартным протоколом STK500.

Помимо обычного подключения, на плате также размещен разъем ISCP для внутрисхемного программирования, позволяющий перезаписать загрузчик или загрузить прошивку в контроллер в обход стандартного программатора.

Программная перезагрузка Arduino

Обычно, в микроконтроллерах перед загрузкой кода предусмотрен вход платы в специальный режим загрузки, однако Arduino Uno избавлена от данного действия для упрощения загрузки в нее программ. Стандартно, перед загрузкой каждый микроконтроллер получает сигнал DTR (digital reset), но в данной плате вывод DTR подключен к микроконтроллеру ATmega8U2 через 100 нФ конденсатор и программатор сам управляет процессом загрузки новой прошивки в контроллер. Таким образом, загрузка прошивки происходит моментально после нажания кнопки Upload в среде Arduino IDE.

Эта функция имеет еще одно интересное применение. Каждый раз при подключении платформы к компьютеру с OC Windows, MacOS или Linux, происходит автоматическая перезагрузка платы и в следующие полсекунды на плате работает загрузчик. Таким образом, для избежания получения некорректных данных, во время загрузки прошивок происходит задержка первых нескольких байтов информации.

Arduino Uno поддерживает отключение автоматической перезагрузки. Для этого необходимо разорвать линию RESET-EN. Еще один способ отключения автоматической перезагрузки – подключение между линиями RESET-EN и линией питания 5V резистора номиналом 110 Ом.

Защита USB разъема от перенапряжения

Для защиты USB порта компьютера от обратных токов, короткого замыкания и сверхнагрузки, на платформе Arduino Uno встроен автоматический самовостанавливающийся предохранитель. При прохождении тока питания более 500 мА через USB порт, предохранитель автоматически срабатывает и размыкает цепь питания до тех пор, пока значения тока не вернуться к нормальным.

Arduino.ru

Электронный конструктор Ардуино

Arduino – это инструмент для проектирования электронных устройств (электронный конструктор) более плотно взаимодействующих с окружающей физической средой, чем стандартные персональные компьютеры, которые фактически не выходят за рамки виртуальности. Это платформа, предназначенная для «physical computing» с открытым программным кодом, построенная на простой печатной плате с современной средой для написания программного обеспечения.

Arduino применяется для создания электронных устройств с возможностью приема сигналов от различных цифровых и аналоговых датчиков, которые могут быть подключены к нему, и управления различными исполнительными устройствами. Проекты устройств, основанные на Arduino, могут работать самостоятельно или взаимодействовать с программным обеспечением на компьютере (напр.: Flash, Processing, MaxMSP). Платы могут быть собраны пользователем самостоятельно или куплены в сборе. Среда разработки программ с открытым исходным текстом доступна для бесплатного скачивания.

Язык программирования Arduino является реализацией Wiring, схожей платформы для «physical computing», основанной на мультимедийной среде программирования Processing.

Разработка электронных устройств Arduino

Почему Arduino?

Существует множество микроконтроллеров и платформ для осуществления «physical computing». Parallax Basic Stamp, Netmedia’s BX-24, Phidgets, MIT’s Handyboard и многие другие предлагают схожую функциональность. Все эти устройства объединяют разрозненную информацию о программировании и заключают ее в простую в использовании сборку. Arduino, в свою очередь, тоже упрощает процесс работы с микроконтроллерами, однако имеет ряд преимуществ перед другими устройствами для преподавателей, студентов и любителей:

Низкая стоимость – платы Arduino относительно дешевы по сравнению с другими платформами. Самая недорогая версия модуля Arduino может быть собрана в ручную, а некоторые даже готовые модули стоят меньше 50 долларов.

Кросс-платформенность – программное обеспечение Arduino работает под ОС Windows, Macintosh OSX и Linux. Большинство микроконтроллеров ограничивается ОС Windows.

Простая и понятная среда программирования – среда Arduino подходит как для начинающих пользователей, так и для опытных. Arduino основана на среде программирования Processing, что очень удобно для преподавателей , так как студенты работающие с данной средой будут знакомы и с Arduino.

Программное обеспечение с возможностью расширения и открытым исходным текстом – ПО Arduino выпускается как инструмент, который может быть дополнен опытными пользователями. Язык может дополняться библиотеками C++. Пользователи, желающие понять технические нюансы, имеют возможность перейти на язык AVR C на котором основан C++. Соответственно, имеется возможность добавить код из среды AVR-C в программу Arduino.

Аппаратные средства с возможностью расширения и открытыми принципиальными схемами – микроконтроллеры ATMEGA8 и ATMEGA168 являются основой Arduino. Схемы модулей выпускаются с лицензией Creative Commons, а значит, опытные инженеры имеют возможность создания собственных версий модулей, расширяя и дополняя их. Даже обычные пользователи могут разработать опытные образцы с целью экономии средств и понимания работы.

Arduino.ru

Arduino Uno контроллер построен на ATmega328 (техническое описание, pdf). Платформа имеет 14 цифровых вход/выходов (6 из которых могут использоваться как выходы ШИМ), 6 аналоговых входов, кварцевый генератор 16 МГц, разъем USB, силовой разъем, разъем ICSP и кнопку перезагрузки. Для работы необходимо подключить платформу к компьютеру посредством кабеля USB, либо подать питание при помощи адаптера AC/DC или батареи.

В отличие от всех предыдущих плат, использовавших FTDI USB микроконтроллер для связи по USB, новый Ардуино Uno использует микроконтроллер ATmega8U2 (техническое описание, pdf).

«Uno» переводится как один с итальянского и разработчики тем самым намекают на грядущий выход Arduino 1.0. Новая плата стала флагманом линейки плат Ардуино. Для сравнения с предыдущими версиями можно обратиться к полному списку плат Arduino.

Характеристики

Микроконтроллер
Рабочее напряжение
Входное напряжение (рекомендуемое)
Входное напряжение (предельное)
Цифровые Входы/Выходы
14 (6 из которых могут использоваться как выходы ШИМ)
Аналоговые входы
Постоянный ток через вход/выход
Постоянный ток для вывода 3.3 В
Флеш-память
32 Кб (ATmega328) из которых 0.5 Кб используются для загрузчика
2 Кб (ATmega328)
1 Кб (ATmega328)
Тактовая частота

Схема и исходные данные
Питание

Arduino Uno может получать питание через подключение USB или от внешнего источника питания. Источник питания выбирается автоматически.

Внешнее питание (не USB) может подаваться через преобразователь напряжения AC/DC (блок питания) или аккумуляторной батареей. Преобразователь напряжения подключается посредством разъема 2.1 мм с центральным положительным полюсом. Провода от батареи подключаются к выводам Gnd и Vin разъема питания.

Платформа может работать при внешнем питании от 6 В до 20 В. При напряжении питания ниже 7 В, вывод 5V может выдавать менее 5 В, при этом платформа может работать нестабильно. При использовании напряжения выше 12 В регулятор напряжения может перегреться и повредить плату. Рекомендуемый диапазон от 7 В до 12 В.

  • VIN. Вход используется для подачи питания от внешнего источника (в отсутствие 5 В от разъема USB или другого регулируемого источника питания). Подача напряжения питания происходит через данный вывод.
  • 5V. Регулируемый источник напряжения, используемый для питания микроконтроллера и компонентов на плате. Питание может подаваться от вывода VIN через регулятор напряжения, или от разъема USB, или другого регулируемого источника напряжения 5 В.
  • 3V3. Напряжение на выводе 3.3 В генерируемое встроенным регулятором на плате. Максимальное потребление тока 50 мА.
  • GND. Выводы заземления.
Память

Микроконтроллер ATmega328 располагает 32 кБ флэш памяти, из которых 0.5 кБ используется для хранения загрузчика, а также 2 кБ ОЗУ (SRAM) и 1 Кб EEPROM.(которая читается и записывается с помощью библиотеки EEPROM).

Входы и Выходы

Каждый из 14 цифровых выводов Uno может настроен как вход или выход, используя функции pinMode(), digitalWrite(), и digitalRead(), . Выводы работают при напряжении 5 В. Каждый вывод имеет нагрузочный резистор (по умолчанию отключен) 20-50 кОм и может пропускать до 40 мА. Некоторые выводы имеют особые функции:

  • Последовательная шина: 0 (RX) и 1 (TX). Выводы используются для получения (RX) и передачи (TX) данных TTL. Данные выводы подключены к соответствующим выводам микросхемы последовательной шины ATmega8U2 USB-to-TTL.
  • Внешнее прерывание: 2 и 3. Данные выводы могут быть сконфигурированы на вызов прерывания либо на младшем значении, либо на переднем или заднем фронте, или при изменении значения. Подробная информация находится в описании функции attachInterrupt().
  • ШИМ: 3, 5, 6, 9, 10, и 11. Любой из выводов обеспечивает ШИМ с разрешением 8 бит при помощи функции analogWrite().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Посредством данных выводов осуществляется связь SPI, для чего используется библиотека SPI.
  • LED: 13. Встроенный светодиод, подключенный к цифровому выводу 13. Если значение на выводе имеет высокий потенциал, то светодиод горит.

На платформе Uno установлены 6 аналоговых входов (обозначенных как A0 .. A5), каждый разрешением 10 бит (т.е. может принимать 1024 различных значения). Стандартно выводы имеют диапазон измерения до 5 В относительно земли, тем не менее имеется возможность изменить верхний предел посредством вывода AREF и функции analogReference(). Некоторые выводы имеют дополнительные функции:

  • I2C: 4 (SDA) и 5 (SCL). Посредством выводов осуществляется связь I2C (TWI), для создания которой используется библиотека Wire.

Дополнительная пара выводов платформы:

  • AREF. Опорное напряжение для аналоговых входов. Используется с функцией analogReference().
  • Reset. Низкий уровень сигнала на выводе перезагружает микроконтроллер. Обычно применяется для подключения кнопки перезагрузки на плате расширения, закрывающей доступ к кнопке на самой плате Arduino.

Обратите внимание на соединение между выводами Arduino и портами ATmega328.

Связь

На платформе Arduino Uno установлено несколько устройств для осуществления связи с компьютером, другими устройствами Arduino или микроконтроллерами. ATmega328 поддерживают последовательный интерфейс UART TTL (5 В), осуществляемый выводами 0 (RX) и 1 (TX). Установленная на плате микросхема ATmega8U2 направляет данный интерфейс через USB, программы на стороне компьютера «общаются» с платой через виртуальный COM порт. Прошивка ATmega8U2 использует стандартные драйвера USB COM, никаких стороних драйверов не требуется, но на Windows для подключения потребуется файл ArduinoUNO.inf. Мониторинг последовательной шины (Serial Monitor) программы Arduino позволяет посылать и получать текстовые данные при подключении к платформе. Светодиоды RX и TX на платформе будут мигать при передаче данных через микросхему FTDI или USB подключение (но не при использовании последовательной передачи через выводы 0 и 1).

Библиотекой SoftwareSerial возможно создать последовательную передачу данных через любой из цифровых выводов Uno.

ATmega328 поддерживает интерфейсы I2C (TWI) и SPI. В Arduino включена библиотека Wire для удобства использования шины I2C.

Программирование

Платформа программируется посредством ПО Arduino. Из меню Tools > Board выбирается «Arduino Uno» (согласно установленному микроконтроллеру). Подробная информация находится в справочнике и инструкциях.

Микроконтроллер ATmega328 поставляется с записанным загрузчиком, облегчающим запись новых программ без использования внешних программаторов. Связь осуществляется оригинальным протоколом STK500.

Имеется возможность не использовать загрузчик и запрограммировать микроконтроллер через выводы ICSP (внутрисхемное программирование). Подробная информация находится в данной инструкции.

Автоматическая (программная) перезагрузка

Uno разработана таким образом, чтобы перед записью нового кода перезагрузка осуществлялась самой программой Arduino на компьютере, а не нажатием кнопки на платформе. Одна из линий DTR микросхемы ATmega8U2, управляющих потоком данных (DTR), подключена к выводу перезагрузки микроконтроллеру ATmega328 через 100 нФ конденсатор. Активация данной линии, т.е. подача сигнала низкого уровня, перезагружает микроконтроллер. Программа Arduino, используя данную функцию, загружает код одним нажатием кнопки Upload в самой среде программирования. Подача сигнала низкого уровня по линии DTR скоординирована с началом записи кода, что сокращает таймаут загрузчика.

Функция имеет еще одно применение. Перезагрузка Uno происходит каждый раз при подключении к программе Arduino на компьютере с ОС Mac X или Linux (через USB). Следующие полсекунды после перезагрузки работает загрузчик. Во время программирования происходит задержка нескольких первых байтов кода во избежание получения платформой некорректных данных (всех, кроме кода новой программы). Если производится разовая отладка скетча, записанного в платформу, или ввод каких-либо других данных при первом запуске, необходимо убедиться, что программа на компьютере ожидает в течение секунды перед передачей данных.

На Uno имеется возможность отключить линию автоматической перезагрузки разрывом соответствующей линии. Контакты микросхем с обоих концов линии могут быть соединены с целью восстановления. Линия маркирована «RESET-EN». Отключить автоматическую перезагрузку также возможно подключив резистор 110 Ом между источником 5 В и данной линией.

Токовая защита разъема USB

В Arduino Uno встроен самовостанавливающийся предохранитель (автомат), защищающий порт USB компьютера от токов короткого замыкания и сверхтоков. Хотя практически все компьютеры имеют подобную защиту, тем не менее, данный предохранитель обеспечивает дополнительный барьер. Предохранитель срабатыват при прохождении тока более 500 мА через USB порт и размыкает цепь до тех пока нормальные значения токов не будут востановлены.

Физические характеристики

Длина и ширина печатной платы Uno составляют 6.9 и 5.3 см соответственно. Разъем USB и силовой разъем выходят за границы данных размеров. Четыре отверстия в плате позволяют закрепить ее на поверхности. Расстояние между цифровыми выводами 7 и 8 равняется 0,4 см, хотя между другими выводами оно составляет 0,25 см.

Что такое Arduino?

Что такое Arduino? Формально это торговая марка, под которой выпускаются официальные платы и программы. Название Arduino идёт от одноименного названия забегаловки в Италии, где создатели любили пропустить по рюмочке. С точки зрения использования, Arduino – это платформа для разработки электронных устройств, точнее их прототипов и макетов. Включает в себя железо (платы) и софт (среда разработки).

Семейство Arduino – несколько моделей так называемых отладочных плат. Отладочная плата представляет собой как ни странно печатную плату, на которой стоит микроконтроллер (далее МК) – та самая штука, которую мы будем программировать. В младших платах Arduino используются микроконтроллеры AVR (UNO, Nano, Mega, Leonardo), в современных моделях стоят более мощные ARM Cortex для более серьёзных проектов.

Ардуино является открытой платформой, поэтому модельный ряд постоянно пополняется неофициальными платами от других производителей, такие платы называют “Arduino-совместимыми”. С ними можно работать в официальной программе Arduino IDE, писать на том же языке с тем же набором команд и даже использовать те же библиотеки! В качестве примера: это платы Teensy, платы на базе МК esp32 и esp8266 (Wemos, NodeMCU), различных китайских клонов и так далее.

Рассмотрим, из чего состоит платформа и какие задачи она решает.

Железо (аппаратная часть)

Как собрать электронное устройство на базе МК? Нужно:

  • Сделать печатную плату, ибо сам МК очень маленький и паять его неудобно.
  • Обеспечить тактирование МК (те самые мегагерцы, как в обычном компьютере) – подключить тактовый генератор.
  • Добавить необходимую обвязку: фильтры по питанию, кнопку перезагрузки, некоторые МК требуют подключения резисторов к определённым пинам, и так далее.
  • Подключить остальные компоненты проекта: расположить их на плате или предусмотреть штекеры.
  • Обеспечить стабильное питание схемы, возможно даже в широком диапазоне питающего напряжения.
  • Некоторые МК нужно “настроить” при помощи программатора.
  • Загрузить прошивку при помощи программатора.

Звучит сложно, именно поэтому ребята из Arduino решили объединить всё это на одной плате: уже настроенный микроконтроллер и всё необходимое для его работы, стабилизатор напряжения, и самое главное – программатор, он тоже расположен на плате и для загрузки прошивки достаточно просто подключить USB кабель! Ноги МК выведены на рейку с пинами (стандартный шаг 2.54 мм), что позволяет работать с платой на брэдборде (макетная плата) и быстро подключать к ней любые компоненты. Изначально сложную задачу упростили до электронного “конструктора”, именно поэтому Arduino стали настолько популярны.

Софт (программная часть)

Как запрограммировать МК? Нужно:

  • Написать прошивку (при помощи любого текстового редактора).
  • Скомпилировать прошивку (для AVR – при помощи бесплатного консольного компилятора avr-gcc).
  • Загрузить прошивку в МК (для AVR – при помощи консольной утилиты avrdude).

Для этого у Arduino есть своя IDE (Integrated Development Environment) – интегрированная среда разработки Arduino IDE. Она представляет собой текстовый редактор, умеет компилировать и загружать код. А также менеджер библиотек и поддержку неофициальных плат. Таким образом весь процесс прошивки сводится к одному щелчку по кнопке загрузить: никаких настроек, никаких плясок с бубном, ничего лишнего. Подробнее об Arduino IDE мы поговорим в отдельном уроке.

Также к программной части можно отнести:

  • “Язык” Arduino, который на самом деле является просто встроенной библиотекой. У всех Arduino-совместимых плат есть одинаковый набор функций, поэтому проект можно практически без изменений перенести с одной платы на другую.
  • Библиотеки, которые в сотни раз упрощают работу с модулями и прочими железками. Для Arduino-среды существует около 5000 библиотек, которые охватывают все Arduino-модули и некоторые микросхемы. Также среди библиотек можно найти различные интересные алгоритмы обработки данных и прочие полезные штуки.

Простота и удобство разработки в совокупности с огромным множеством плат на разных МК и набором библиотек на все случаи жизни сделало Arduino самой простой и удобной платформой для изучения робототехники и создания прототипов электронных устройств.

Программирование

На каком языке программируется Arduino? Многие называют его “упрощённый C++“, “разновидность C++“, “язык Ардуино“, сами Arduino называют его “Arduino Wiring“. Но на самом деле язык здесь – обычный C++ (си-плюс-плюс) со всем соответствующим ему синтаксисом и возможностями, операторами и прочими инструментами (версия C++17). Но есть пара моментов:

  • Среда Arduino IDE слегка меняет стандартный вид программы на C++ и действительно упрощает понимание для новичка. В то же время Arduino IDE не заставляет писать программу “по-Ардуиновски”, можно оформить её как обычную программу на Си (объявить int main()<> и писать свой код).
  • Arduino IDE автоматически подключает в код библиотеку Arduino.h, которая содержит базовый набор функций для работы с МК, а также некоторые константы и математические функции, которые пришли из открытого фреймворка Wiring.
  • В AVR Arduino используется компилятор avr-gcc, в котором нет стандартных для компьютерной разработки std:: библиотек. Но зато есть свои библиотеки, ориентированные на работу с микроконтроллером.

Дополнительно в Arduino IDE нам доступно:

  • Встроенные библиотеки для работы с интерфейсами связи и памятью.
  • В папке с программой лежит набор стандартных библиотек: для LCD дисплея, шагового мотора, сервопривода и некоторых других железок.
  • [Только для AVR Arduino] Вместе с компилятором идёт набор низкоуровневых библиотек для AVR (сон, progmem, watchdog и многие многие другие).
  • Работа с микроконтроллером “напрямую” при помощи регистров.
  • Можно писать на ассемблере, взяв под контроль каждый такт работы МК.

Если вы научитесь свободно программировать Ардуино и вдруг перейдете к разработке программ на том же C++ в более взрослых средах разработки, вы будете неприятно удивлены большим количеством дополнительного кода, который придется писать руками. И наоборот, если умеющий в C++ человек посмотрит на типичный ардуино-код, он скажет “да как это вообще работает?”. Компилятор в Arduino IDE настроен на максимальную всеядность и прощение ошибок, потому что это обучающая платформа.

Библиотеки

Жизнь рядового ардуинщика неразрывно связана с библиотеками, потому что огромное комьюнити за годы своего существования сделало огромное количество этих самых библиотек на все случаи жизни и для всех продающихся датчиков и модулей. Библиотека это набор файлов с кодом, которым мы можем пользоваться просто ознакомившись с документацией или посмотрев примеры. Такой подход называется “черным ящиком”, мы можем даже не догадываться, насколько сложный код содержится в библиотеке, но будем с лёгкостью пользоваться возможностями, который этот код даёт. Купили модуль – нашли библиотеку – открыли пример – всё, результат достигнут.

Чистый Си? Писать без библиотек?

Очень многие считают, что эффективный код нужно писать без библиотек, чистым полотном. Это полнейшая чушь, потому что:

  • Современные микроконтроллеры имеют достаточно памяти для того, чтобы разработчик мог позволить себе сэкономить время и использовать готовые инструменты. Более того, серьёзные разработки делаются с использованием операционных систем реального времени, которые сами по себе являются огромной тяжёлой библиотекой. Никто не пишет на ассемблере, за окном не 1980 год.
  • Компилятор “вырежет” неиспользуемый код из библиотеки.
  • Если писать крупный проект чисто голым кодом – это будет полотно на несколько тысяч строк, в котором невозможно будет разобраться. Программу разбивают на файлы – по сути на те же самые библиотеки! Некоторые алгоритмы и части программы изначально удобно обернуть в независимую библиотеку и использовать в том числе для других проектов, чтобы не писать заново. Так что писать без библиотек невозможно в принципе, неважно скачаете ли вы её с интернета или напишете сами.
  • Если у вас в проекте одна кнопка – нет большой разницы, описывать её вручную или использовать библиотеку. Но как только появляется ещё одна кнопка – с точки зрения памяти гораздо эффективнее использовать библиотеку, потому что код обработки не будет дублироваться. К этому мы вернёмся в уроке про создание крупных проектов.
  • Если вы новичок, то в 99% библиотека из интернета будет написана и оптимизирована в разы лучше, чем ваш код.

Возможности

Зачем учиться работать с Ардуино и электроникой в целом?

  • Это невероятно интересное, техническое, развивающее мозги и относительно дешёвое “DIY” хобби с бесконечным количеством идей и способов их реализаций
  • Возможность создания узко-специальных электронных устройств и станков, аналогов которым нет в продаже или они слишком дорогие. В том числе для личных нужд или работы (знакомый ювелир сделал себе контроллер для муфельной печи, который стоит очень дорого).
  • Возможность создания уникальных устройств с целью выхода на краудфандинг и запуска своего бизнеса.
  • Отличная практика в программировании и электронике, особенно перед обучением на соответствующую специальность.
  • Возможности в целом: автоматизация, автоматическое регулирование процессов, дистанционное управление, мониторинг различных величин, носимые и стационарные электронные устройства различного назначения.

Хейтеры платформы

В мире серьезных программистов и разработчиков очень не любят Ардуино. Почему? Рассмотрим несколько популярных негативных комментариев о платформе.

  • В среде Arduino IDE работа с микроконтроллером упрощена настолько, что ардуинщику вообще ничего не нужно знать о его архитектуре и о том, как он вообще программируется и настраивается: все сделано в виде готовых и понятных функций.
    • С каких пор удобство и простота стали плохими? Для новичка это единственный способ познакомиться с миром робототехники без изучения кипы документации и получения соответствующего образования. Ардуино создана в первую очередь для обучения, и во вторую – для быстрого и удобного создания прототипов электронных устройств, это её фишка.
    • Да, стандартные функции имеют кучу защит от дурака новичка, они тяжёлые и медленные. Но новичок и не сможет написать такой код, где скорость и память будут настолько критичны! А если понадобится, то к этому времени он уже будет в состоянии писать код оптимально и найдёт на моём сайте или в другом месте в Интернете быстрые аналоги Ардуино-функций или напишет их сам. И ещё один момент: ядро Ардуино устроено так, что обеспечивает совместимость кода и библиотек для всех Ардуино-плат. Начали делать проект на Arduino NANO и памяти/ног стало не хватать? Переносим проект на Arduino MEGA и продолжаем работать. NANO оказалась слишком велика для проекта? Переносим на ATTiny85, даже не открывая документацию: большинство библиотек работают на всех Ардуино-совместимых платах, это очень жирный плюс, хоть и в ущерб производительности и памяти.
    • А никто и не обещал вам HAL! Возможности МК раскрываются при использовании библиотек (см. список библиотек), благо сообщество у платформы действительно огромное. Также всегда можно научиться работать с даташитом и регистрами и настраивать всё что угодно и как угодно вручную.
    • И правильно делает! Одна ошибка – и можно остаться с заблокированным МК. При желании через Arduino IDE можно и фьюзы прошить, и под другие частоты настроить, об этом читайте вот в этом уроке.
    • Всё верно, для детей и домохозяек. Плата Ардуино задумана для создания макетов, прототипирования, её можно рассматривать как часть электронного “конструктора” для обучения. На плате есть вся необходимая обвязка, почему не использовать её даже как сердце готового проекта?
    • Верно, но есть небольшой нюанс: Arduino IDE официально бесплатная, после простой установки (Далее, Далее, Далее, Готово) она сразу готова к работе: достаточно выбрать плату из списка и начать писать код. Взрослые среды разработки требуют взрослого подхода и порог вхождения для работы с ними несоизмеримо высок. Помимо непростой установки и настройки вас ждут расширенные настройки самого микроконтроллера в ручном режиме, чтение документации и даташитов, “взрослый” интерфейс и множество нюансов в самом программировании и настройках компилятора. Времени на изучение этого всего уйдёт много, а нормальных уроков вы скорее всего не найдёте.
    • Платформа ничем не ограничивает разработчика, но если он сам не захочет – не разовьётся.
    • Скажите это ЧПУ станкам (прошивка GRBL), 3D принтерам (прошивка Marlin), квадрокоптерам и самолётам (прошивка Ardupilot) и многим другим крупным проектам.
    • Да, да, да. Но не забывайте про порог вхождения и размер сообщества с контентом, библиотеками и примерами “для новичков”, а также о сложности работы с STM в целом. Посмотрите видосы вот на этом канале и сравните происходящее с Arduino. Что касается возможностей и скорости работы – для большинства любительских проектов Arduino (ATmega328/2560) будет более чем достаточно, особенно если уметь писать оптимальный код.
    • Да, из-за простых, но понятных стандартных примеров аудитория ардуинщиков выросла очень быстро и буквально завалила интернет своими проектами, завлекая тем самым в это хобби других новичков. 99% учебных примеров, примеров работы с библиотеками и модулями написаны простенько и ужасно неоптимально: int переменные для всего подряд, вездесущий delay, блокирующие циклы и прочее, помимо богомерзких ардуино-функций. Люди берут эти примеры как основу и продолжают дальше писать так же. Но эти люди стоят на пороге очень большой двери под названием робототехника. Перешагнув через этот порог, отбросив все кривые примеры и научившись грамотно выстраивать структуру своего кода, они попадают в мир безграничных возможностей для творчества и исследования, мир бесконечно интересных и разнообразных проектов на Arduino. Для этого я и пишу данные уроки.

    Что ещё хочется сказать по поводу негатива от “профессионалов” – в большинстве случаев они просто завидуют: в “их время” для создания даже простенького проекта на базе микроконтроллера нужно было потратить огромное количество времени на изучение документации на английском языке на конкретную модель МК, на все остальные железки и микросхемы в проекте, научиться работать в недружелюбной среде разработки, развести и спаять плату, купить дорогой программатор и прочее прочее. А в наше время можно купить плату за 150р, воткнуть её в USB, запустить программу вида “блокнот с кнопкой Загрузить” и начать кодить с использованием огромного количества готовых библиотек и примеров для практически любых железок на рынке, а на любой свой вопрос можно найти ответ в гугле. Реально, у ребят просто пригорает одно место =)

    Видео версия

    Полезные страницы

    • Набор GyverKIT – большой стартовый набор Arduino моей разработки, продаётся в России
    • Каталог ссылок на дешёвые Ардуины, датчики, модули и прочие железки с AliExpress у проверенных продавцов
    • Подборка библиотек для Arduino, самых интересных и полезных, официальных и не очень
    • Полная документация по языку Ардуино, все встроенные функции и макросы, все доступные типы данных
    • Сборник полезных алгоритмов для написания скетчей: структура кода, таймеры, фильтры, парсинг данных
    • Видео уроки по программированию Arduino с канала “Заметки Ардуинщика” – одни из самых подробных в рунете
    • Поддержать автора за работу над уроками
    • Обратная связь – сообщить об ошибке в уроке или предложить дополнение по тексту ([email protected])

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *