Как разделить на 3 части
Перейти к содержимому

Как разделить на 3 части

  • автор:

Таблица деления окружности на равные части

На производстве не редко приходится выполнять разметочные работы, связанные с делением окружности на равные части. Их можно делать с помощью делительной головки, которая поворачивает деталь на необходимый угол и штангенрейсмуса, которым наносят риски при разметке. Деление окружности также можно производить на поворотном столе и даже на токарном станке, оснащенном градусной шкалой.

Данный вид работ производится чаще всего для изготовления фланцев, которые размечаются для дальнейшей операции сверления, но если позволяет оснастка, можно обойтись только сверлением поворачивая деталь на необходимый угол, что намного быстрее.

В условиях отсутствия вышеперечисленных средств, производства или когда деталь по размерам выходит за пределы этого оборудования можно воспользоваться методом геометрических построений, которые представлены в таблице расположенной ниже.

Для того чтобы разделить окружность на три равные части нужно провести линию АВ , затем провести дугу, радиус которой равен половине диаметра окружности. Точки CD образованные пересечением окружности с дугой и точка A разделяют окружности на три равные части.

Чтобы разделить окружность на четыре равные части нужно провести линию AB равную диаметру этой окружности, далее из точек А и В штангенциркулем или просто циркулем делают засечки с одинаковым радиусом, а через точки их пересечения C и D проводят линию. Таким образом линии AB и CD пересекаясь с окружностью образуют точки А , Н , В и М которые и делят окружность.

Если стоит задача разделить окружность на пять равных частей в таком случае нужно провести две взаимно перпендикулярные линии АВ и CD . Далее разделить половину диаметра, например OD , точкой М которую можно накренить.

При дальнейшей разметке делают дугу AH причем точка М будет центром радиуса, а точка A началом дуги. Далее описывают дугу НК из точки Н с центром радиуса в точке А .

Отрезок АК будет тем размером, на котором нужно зафиксировать штангенциркуль или циркуль, для дальнейшего деления окружности на пять частей.

В случае если требуется разделить окружность на 10 частей процедура геометрического построения остаётся аналогичной, но только раствор циркуля устанавливают не по отрезку АК , а по отрезку OH .

Для разбиения окружности на шесть равных частей нужно отложить линию АВ , которая является также диаметром, и из точек А и В с помощью разметочного инструмента прочертить две дуги с радиусом данной окружности. Точки А , М , D , В , С и К полученные в результате подобного построения делят окружность на шесть равных частей.

В данном случае нужно разделить окружность на четыре равные части как указывалось выше и с помощью инструмента сделать засечки на удалении произвольного радиуса с центрами вращения в точках CA для угла AOС и AD для угла AOD .

Если провести две линии через окружность, с условием что они пересекут центр окружности и места пересечения засечек, то образуются точки KNMH , которые вместе с точками ACBD делят окружность на 8 равных частей.

Для деления окружности на двенадцать равных частей сначала её делят на шесть частей, как упоминалось выше. Далее проводят линии СH и DM . Чтобы на окружности появились ещё шесть равноудалённых точек нужно дополнительно провести три подобные линии, делящие углы АОС , COD и DOB пополам. Для этого штангенциркулем наносят пересекающиеся риски за пределами окружности на произвольном расстоянии в точке a , при этом центрами вращения разметочного инструмента в данном случае будут точки H и B ( для b точки MH , для c точки MA ). Далее через засечки и центр окружности проводят линии ad , be и cf .

Окружность можно разделить на любое необходимое число равных частей зная длину хорды, на которую настраивается разметочный инструмент.

Длину хорды проще всего рассчитать по формуле, где диаметр окружности нужно умножить на коэффициент указанный в таблице.

D – диаметр окружности

При данном способе деления окружности, когда число частей превышает минимальное значение, накапливается заметная суммарная ошибка.

Для её уменьшения размечать деталь можно, например на 3 , 6 , 12 или более частей, и лишь затем в интервале из каждой части делить их на нужное число равных частей.

Разрезать фото на равные части онлайн

Главное нужно указать картинку на вашем компьютере или телефоне, при необходимости указать, сколько частей должно быть по ширине и высоте, нажать кнопку ОК, подождать пару секунд, скачать результат. Остальные настройки уже выставлены по умолчанию. Ещё есть обычная обрезка фотографии, где можно указать, сколько % или пикселей нужно обрезать с каждой стороны.

Пример фотографии до и после разрезания на две равные части по вертикали, настройки выставлены по умолчанию:
Оригинальная фотография розы Обрезанная фотография по вертикали, часть 1, первая половина Вертикальная обрезка фотографии, часть 2, вторая половина

На этом сайте можно разрезать фото ещё и так, первая нижеперечисленная картинка разрезана на девять частей одинакового размера (формат 3×3), вторая картинка разрезана на две равные части по горизонтали (формат 1×2):

Обрезанная фотография по середине, горизонтальная обрезка, первая часть
Обрезанная фотография по горизонтали, вторая часть

При помощи этого онлайн сервиса можно разрезать картинку на две, три, четыре, пять или даже 900 равных или квадратных частей, а также автоматически разрезать фото для Instagram, указав лишь нужный формат обрезки, например, 3×2 для горизонтальной фотографии, 3×3 для квадратной или 3×4 для вертикальной. Если нужно обработать огромную картинку более 100 мегапикселей, разрезать её на большее количество частей или нужна другая нумерация нарезанных .jpg файлов, то пишите на ящик – будет сделано бесплатно в течение суток.

Исходное изображение не изменяется. Вам будет предоставлено несколько картинок, разрезанных на равные части.

Черчение. 10 класс

Для выполнения чертежей некоторых изделий необходимо овладеть приемами деления окружностей на равные части и построения многоугольников, вписанных в окружность (рис. 34, 35).

Деление окружности на 2 и 4 равные части. Любой диаметр делит окружность на две равные части. Два взаимно перпендикулярных диаметра делят ее на четыре равные части.

Как вы считаете, как вписать в окружность квадрат, стороны которого параллельны осевым линиям?

Последовательность деления окружности на 4 равные части

1. Проводят окружность с радиусом R.
2. Из точек С и В тем же радиусом R, что и радиус окружности, проводят дуги до их взаимного пересечения.
3. Точку пересечения соединяют прямой с центром окружности. Получают точки 1 и 3.
4. Аналогично выполняют построение из точек А и С.

Установите последовательность операций по делению окружности на восемь равных частей.

Деление окружности на 3 и 6 равных частей
Последовательность деления окружности
1. Проводят окружность с заданным радиусом R.
2. Из точки А тем же радиусом R проводят дугу до пересечения с окружностью в точках 2 и 3.
3. Точки пересечения 2 и 3 соединяют прямыми
линиями, получают вписанный треугольник.

Составьте алгоритм деления окружности на три равные части таким образом, чтобы получить геометрические фигуры, изображенные на рисунке.

При делении окружности на 6 равных частей выполняется то же построение, что и при делении окружности на 3 части, но дугу описывают не один, а два раза, из точек 1 и 4 радиусом окруж ности R.

Выполнять деление окружности на равные части можно не только с помощью циркуля, но и используя угольник. Разделить окружность на число частей n можно, используя формулу расчета длины хорды (см. Памятку 4).

Угольником с углами 30° и 60°. Гипотенуза угольника должна проходить через центр окружности

Зная, на какое число (п) следует разделить окружность, находят по таблице коэффициент k. При умножении коэффициента k на диаметр окружности D получают длину хорды l, которую циркулем откладывают на окружности п раз

Деление окружности на 5 равных частей
Последовательность деления окружности
1. Из точки А радиусом окружности R проводят дугу до пересечения окружности в точках n и m. Соединяют полученные точки n и m прямой линией. На пересечении с горизонтальной осевой линией получают точку В.
2. Из точки В радиусом, равным отрезку ВС, проводят дугу, которая пересечет горизонтальную осевую линию в точке D.
3. Соединив точки С и D, получаем отрезок СD, который и является длиной стороны пятиугольника. Из точки С проводят дугу радиусом, равным СD, и получают точки 5 и 2. Из полученных точек 5 и 2 проводят еще по одной дуге R = CD и находят точки 3 и 4.

Как вы считаете, каким образом можно разделить окружность на 10 равных частей для получения рисунка орнамента? Предложите способ деления окружности.

Деление окружности на 7 равных частей

Последовательность деления окружности на 7 равных частей аналогично по построению с алгоритмом деления на 5 равных частей.
1. Из точки А проводят дугу радиусом окружности R, которая пересекает окружность в двух точках.
2. Соединив точки пересечения прямой, при пересечении с горизонтальной осевой линией получаем точку В. Отрезок СВ является длиной стороны семиугольника
3. Из точки 1 радиусом, равным отрезку СВ, делают по окружности 7 засечек и получают семь точек.

Знаете ли вы, что не все кривые линии могут быть вычерчены с помощью циркуля и их построение выполняется по ряду точек? При вычерчивании кривой полученный ряд точек соединяют по лекалу, поэтому ее называют лекальной кривой линией. Точность построения лекальной кривой повышается с увеличением числа промежуточных точек на ее участке. К лекальным кривым относятся эллипс, парабола, гипербола, которые получаются в результате сечения кругового конуса плоскостью.
К лекальным кривым также относят эвольвенту, синусоиду, спираль Архимеда, циклоидальные кривые.
Архимедова спираль была открыта Архимедом в III в. до н. э., когда он экспериментировал с компасом. Он тянул стрелку компаса с постоянной скоростью, вращая сам компас по часовой стрелке. Получившаяся кривая была спиралью, которая сдвигалась на ту же величину, на которую поворачивался компас, и между витками спирали сохранялось одно и то же расстояние. Спираль Архимеда встречается не только в природе, ее используют в архитектуре, технике. Например, по спирали Архимеда идет звуковая дорожка или строится круговая лестница.

С помощью деления окружности на равные части составляются круговые орнаменты — узоры, украшающие различные сооружения, утварь, оружие и т. д. Основа создания орнамента — геометрические построения. На рисунок орнамента могут влиять технические, растительные, текстовые мотивы. Круговые орнаменты могут быть как простыми, например для геометрической резьбы, так и очень сложными, требующими серьезных геометрических построений.

Деление окружности на 3 равные части

Чтобы разделить окружность на 3 равные части, воспользуемся для этого циркулем. Итак, чертим окружность.

окружность

Линейкой от центра под углом 90 0 проводим линию (радиус окружности) к нижней части дуги окружности.

окружность с радиусом

Затем место пересечение радиуса и дуги окружности — это центр новой окружности с таким же радиусом. Опять циркулем чертим окружность.

две окружности

Две точки пересечения окружностей и точка, образованная пересечением радиуса (проведённого линейкой от центра первой окружности под углом 90 0 к верхней части дуги первой окружности).

По сути, получаем треугольник.

треугольник вписан в окружность 120 градусов

Далее от центра первой окружности проводим линии к вершинам треугольника, тем самым делим первую окружность на три равные части под углом 120 0 .

Деление окружности на 3 равные части

окружность разделена на три части

76642

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *