Почему счетчик гейгера не регистрирует альфа частицы
Перейти к содержимому

Почему счетчик гейгера не регистрирует альфа частицы

  • автор:

Почему счетчик гейгера не регистрирует альфа частицы

Cчётчик Гейгера (или счётчик Гейгера-Мюллера) — газонаполненный счётчик заряженных элементарных частиц, электрический сигнал с которого усилен за счёт вторичной ионизации газового объёма счётчика и не зависит от энергии, оставленной частицей в этом объёме. Изобретён в 1908 г. Х. Гейгером и Э. Резерфордом, позднее усовершенствован Гейгером и В. Мюллером.
Конструктивно счётчик Гейгера устроен также как пропорциональный счётчик, т.е. представляет собой цилиндрический конденсатор, заполненный инертным газом. К внутреннему электроду (тонкой металлической нити) приложен положительный потенциал, к внешнему – отрицательный. Функционально счётчик Гейгера также в основном повторяет пропорциональный счётчик, но отличается от последнего тем, что за счёт более высокой разности потенциалов на электродах работает в таком режиме, когда достаточно появления в объёме детектора одного электрона, чтобы развился мощный лавинообразный процесс, обусловленный вторичной ионизацией ( газовое усиление), который способен ионизовать всю область вблизи нити-анода. При этом импульс тока достигает предельного значения (насыщается) и не зависит от первичной ионизации. По существу, при попадании в счетчик Гейгера частицы в нём вспыхивает (зажигается) самостоятельный газовый разряд. При этом коэффициент газового усиления может достигать 10 10 , а величина импульса десятков вольт.
Этот счётчик обладает практически стопроцентной вероятностью регистрации заряженной частицы, так как для возникновения разряда достаточно одной электрон-ионной пары. Однако длительность сигнала со счётчика Гейгера сравнительно велика (≈ 10 -4 с). Именно такое время требуется, чтобы медленные положительные ионы, заполнившие пространство вблизи нити-анода после пролёта частицы и прохождения электронной лавины, ушли к катоду и восстановилась чувствительность детектора.

почему не регистрируются а-частицы с помощью счетчика Гейгера?

Эффективность счётчика зависит от толщины стенок счётчика, их материала и энергии γ-излучения. Наибольшей эффективностью обладают счётчики, стенки которых сделаны из материала с большим атомным номером Z, так как при этом увеличивается образование вторичных электронов. Кроме того, стенки счётчика должны быть достаточно толстыми. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объем счётчика, и возникновения импульса тока не произойдет. Так как γ-излучение слабо взаимодействует с веществом, то обычно эффективность γ-счётчиков также мала и составляет всего 1-2 %. Другим недостатком счётчика Гейгера — Мюллера является то, что он не даёт возможность идентифицировать частицы и определять их энергию. Эти недостатки отсутствуют в сцинтилляционных счётчиках. http://www.u-tube.ru/pages/video/38781/

Остальные ответы

Плохо летают!
Особенно сквозь плотные предметы. . а стенка счётчика. .
выводы сами.

корпус СГМ из металла, а альфа излучение лист бумаги пробить не может.
Есть СГМ с тонким слюдяным окном, им мона засечь высокоэнергетические альфа частицы.

Почему счетчик гейгера не регистрирует альфа частицы

Сегодня кажется почти неправдоподобным, сколько открытий в физике атомного ядра было сделано с использованием природных источников радиоактивного излучения с энергией всего лишь несколько МэВ и простейших детектирующих устройств. Открыто атомное ядро, получены его размеры, впервые наблюдалась ядерная реакция, обнаружено явление радиоактивности, открыты нейтрон и протон, предсказано существование нейтрино и т.д. Основным детектором частиц долгое время была пластинка, с нанесенным на нее слоем сернистого цинка. Частицы регистрировались глазом по производимым ими в сернистом цинке вспышкам света. Черенковское излучение впервые наблюдалось визуально. Первая пузырьковая камера, в которой Глезер наблюдал треки α-частиц была величиной с наперсток. Источником частиц высоких энергий в то время были космические лучи — частицы, образующиеся в мировом пространстве. В космических лучах впервые наблюдались новые элементарные частицы. 1932 год — открыт позитрон ( К. Андерсон), 1937 год — открыт мюон (К. Андерсон, С. Недермейер), 1947 год — открыт π-мезон (Пауэл), 1947 год — обнаружены странные частицы (Дж. Рочестер, К. Батлер).
Со временем экспериментальные установки становились все сложней. Развивалась техника ускорения и детектирования частиц, ядерная электроника. Успехи в физике ядра и элементарных частиц все в большей степени определяются прогрессом в этих областях. Нобелевские премии по физике часто присуждаются за работы в области техники физического эксперимента.
Детекторы служат как для регистрации самого факта наличия частицы так и для определения её энергии и импульса, траектории движения частицы и др. характеристик. Для регистрации частиц часто используют детекторы которые максимально чувствительны к регистрации определенной частицы и не чувствуют большой фон создаваемый другими частицами.
Обычно в экспериментах по физике ядра и частиц необходимо выделять «нужные» события на гигантском фоне «ненужных» событий, может быть одно из миллиарда. Для этого используют различные комбинации счётчиков и методов регистрации, используют схемы совпадений или антисовпадений между событиями, зарегистрированными различными детекторами, отбор событий по амплитуде и форме сигналов и т.п. Часто используется селекция частиц по их времени пролёта определённого расстояния между детекторами, магнитный анализ и другие методы, которые позволяют надёжно выделить различные частицы.
Регистрация заряженных частиц основана на явлении ионизации или возбуждении атомов, которое они вызывают в веществе детектора. На этом основана работа таких детекторов как камера Вильсона, пузырьковая камера, искровая камера, фотоэмульсии, газовые сцинтилляционные и полупроводниковые детекторы. Незаряженные частицы (γ-кванты, нейтроны, нейтрино) детектируются по вторичным заряженным частицам, возникающим в результате их взаимодействия с веществом детектора.
Нейтрино непосредственно не регистрируются детектором. Они уносят с собой определённую энергию и импульс. Недостачу энергии и импульса можно обнаружить, применяя закон сохранения энергии и импульса к другим зарегистрированным в результате реакции частицам.
Быстрораспадающиеся частицы регистрируются по их продуктам распада. Большое применение нашли детекторы, позволяющие непосредственно наблюдать траектории частиц. Так с помощью камеры Вильсона, помещенной в магнитное поле были открыты позитрон, мюон и -мезоны, с помощью пузырьковой камеры — многие странные частицы, с помощью искровой камеры регистрировались нейтринные события и т.д.

1. Счётчик Гейгера. Счётчик Гейгера представляет собой, как правило, цилиндрический катод, вдоль оси, которого натянута проволока — анод. Система заполнена газовой смесью.
При прохождении через счётчик заряженная частица ионизирует газ. Образующиеся электроны, двигаясь к положительному электроду — нити, попадая в область сильного электрического поля, ускоряются и в свою очередь ионизуют молекулы газа, что приводит к коронному разряду. Амплитуда сигнала достигает нескольких вольт и легко регистрируется. Счётчик Гейгера регистрирует факт прохождения частицы через счётчик, но не позволяет измерить энергию частицы.

2. Пропорциональный счетчик. Пропорциональный счетчик имеет такую же конструкцию, как и счётчик Гейгера. Однако за счёт подбора напряжения питания и состава газовой смеси в пропорциональном счетчике при ионизации газа пролетевшей заряженной частицей не происходит коронного разряда. Под действием электрического поля создаваемого вблизи положительного электрода первичные частицы производят вторичную ионизацию и создают электрические лавины, что приводит к усилению первичной ионизации созданной пролетевшей через счётчик частицы в 10 3 — 10 6 раз. Пропорциональный счетчик позволяет регистрировать энергию частиц.

3. Ионизационная камера. Так же как в счетчике Гейгера и пропорциональном счетчике в ионизационной камере используется газовая смесь. Однако, по сравнению с пропорциональным счетчиком напряжение питания в ионизационной камере меньше и усиления ионизации в ней не происходит. В зависимости от требований эксперимента для измерения энергии частиц используется либо только электронная компонента токового импульса, либо электронная и ионная.

4. Полупроводниковый детектор. Устройство полупроводникового детектора, которые обычно изготовляются из кремния или германия, аналогично устройству ионизационной камеры. Роль газа в полупроводниковом детекторе играет определенным образом созданная чувствительная область, в которой в обычном состоянии нет свободнных носителей заряда. Попав в эту область заряженная частица вызывает ионизацию, соответственно в зоне проводимости появляются электроны, а в валентной зоне — дырки. Под действием приложенного к напыленным на поверхность чувствительной зоны электродам напряжения, возникает движение электронов и дырок, формируется импульс тока. Заряд импульса тока несет информацию об количестве электронов и дырок и соответственно об энергии, которую заряженная частица потеряла в чувствительной области. И, если частица полностью потеряла энергию в чувствительной области, проинтегрировав токовый импульс получают информацию об энергии частицы. Полупроводниковые детекторы обладают высоким энергетическим разрешением.
Число пар ионов nион в полупроводниковом счётчике определяется формулой

где E — кинетическая энергия частицы, W — энергия, необходимая для образования одной пары ионов. Для германия и кремния W ~ 3-4 эВ и равна энергии необходимой для перехода электрона из валентной зоны в зону проводимости. Малая величина W определяет высокое разрешение полупроводниковых детекторов, по сравнению с другими детекторами, в которых энергия первичной частицы тратится на ионизацию (Еион >> W).

5. Камера Вильсона. Принцип работы камеры Вильсона основан на конденсации пересыщенного пара и образовании видимых капель жидкости на ионах вдоль следа пролетевшей через камеру заряженной частицы. Для создания пересыщенного пара происходит быстрое адиабатическое расширение газа с помощью механического поршня. После фотографирования трека, газ в камере снова сжимается, капельки на ионах испаряются. Электрическое поле в камере служит для “очистки” камеры от ионов образовавшихся при предыдущей ионизации газа

6. Пузырьковая камера. Принцип действия основан на вскипании перегретой жидкости вдоль трека заряженной частицы. Пузырьковая камера представляет собой сосуд, заполненный прозрачной перегретой жидкостью. При быстром понижении давления, вдоль трека ионизирующей частицы образуется цепочка пузырьков пара, которые освещаются внешним источником и фотографируются. После фотографирования следа давление в камере повышается, пузырьки газа схлопываются и камера снова готова к работе. В качестве рабочей жидкости в камере используется жидкий водород одновременно служащий водородной мишенью для исследования взаимодействия частиц с протонами.
Камера Вильсона и пузырьковая камера имеют огромное преимущество, которое заключается в том, что можно непосредственно наблюдать все заряженные частицы, образующиеся в каждом акте реакции. Для того, чтобы определить тип частицы и ее импульс камеры Вильсона и пузырьковые камеры помещают в магнитное поле. Пузырьковая камера имеет большую плотность вещества детектора по сравнению с камерой Вильсона и поэтому пробеги заряженных частиц полностью заключены в объёме детектора. Расшифровка фотографий с пузырьковых камер представляет отдельную трудоемкую проблему.

7. Ядерные эмульсии. Аналогично, как это происходит в обычной фотографии, заряженная частица нарушает вдоль своего пути структуру кристаллической решётки зерен галоидного серебра делая их способными к проявлению. Ядерная эмульсия является уникальным средством для регистрации редких событий. Стопки ядерных эмульсий позволяют регистрировать частицы очень больших энергий. С их помощью можно определить координаты трека заряженной частицы с точностью ~1 микрона. Ядерные эмульсии широко используются для регистрации космических частиц на шарах-зондах и космических аппаратах.

8. Искровая камера. Искровая камера состоит нескольких плоских искровых промежутков, объединённых в одном объёме. После прохождения заряженной частицы через искровую камеру на её электроды подаётся короткий высоковольтный импульс напряжения. В результате вдоль трека образуется видимый искровой канал. Искровая камера, помещённая в магнитное поле, позволяет не только детектировать направление движения частицы, но и по искривлению траектории определять тип частицы и её импульс. Размеры электродов искровых камер могут доходить до нескольких метров.

9. Стриммерная камера. Это аналог искровой камеры, с большим межэлектродным расстоянием ~0.5 м. Длительность высоковольтного разряда подаваемого на искровые промежутки составляет ~10 -8 с. Поэтому образуется не искровой пробой, а отдельные короткие светящиеся световые каналы — стриммеры. В стриммерной камере можно регистрировать одновременно несколько заряженных частиц.

10. Пропорциональная камера. Пропорциональная камера обычно имеет плоскую или цилиндрическую форму и в каком-то смысле является аналогом многоэлектродного пропорционального счетчика. Высоковольтные проволочные электроды отстоят друг от друга на расстоянии нескольких мм. Заряженные частицы, проходя через систему электродов, создают на проволочках импульс тока длительностью ~10 -7 с. Регистрируя эти импульсы с отдельных проволочек можно с точностью до нескольких микрон восстановить траекторию частиц. Разрешающее время пропорциональной камеры составляет несколько микросекунд. Энергетическое разрешение пропорциональной камеры ~5-10%.

11. Дрейфовая камера. Это аналог пропорциональной камеры, позволяющий с ещё большей точностью восстановить траекторию частиц.
Искровая, стриммерная, пропорциональная и дрейфовая камеры обладая многими преимуществами пузырьковых камер, позволяют запускать их от интересующего события, используя их на совпадения со сцинтиляционными детекторами.

12. Сцинтиляционный детектор. Сцинтиляционный детектор использует свойство некоторых веществ светиться (сцинтилировать) при прохождении заряженной частицы. Кванты света, образующиеся в сцинтиляторе, затем регистрируются с помощью фотоумножителей. Используются как кристаллические сцинтилляторы, например, NaI, BGO, так и пластиковые и жидкие. Кристаллические сцинтилляторы в основном используются для регистрации гамма-квантов и рентгеновского излучения, пластиковые и жидкие — для регистрации нейтронов и временных измерений. Большие объёмы сцинтиляторов позволяют создавать детекторы очень высокой эффективности, для регистрации частиц с малым сечением взаимодействия с веществом.

13. Калориметры. Калориметры представляют собой чередующиеся слои вещества, в котором тормозятся частицы высоких энергий (обычно это слои железа и свинца) и детекторы, в качестве которых используют искровые и пропорциональные камеры или слои сцинтиляторов. Ионизирующая частица высокой энергии (E > 10 10 эВ), проходя через калориметр, создаёт большое число вторичных частиц, которые, взаимодействуя с веществом калориметра, в свою очередь создают вторичные частицы — образуют ливень частиц в направлении движения первичной частицы. Измеряя ионизацию в искровых или пропорциональных камерах или световой выход сцинтиляторов, можно определить энергию и тип частицы.

14. Черенковский счётчик. Работа черенковского счётчика основана на регистрации излучения Черенкова — Вавилова, возникающего при движении частицы в среде со скоростью v превышающей скорость распространения света в среде (v > c/n). Свет Черенковского излучения направлен вперёд под углом по направлению движения частицы.

Световое излучение регистрируется с помощью фотоумножителя. При помощи черенковского счётчика можно определить скорость частицы и отселектировать частицы по скоростям.
Самым большим водяным детектором, в котором частицы детектируются с помощью черенковского излучения, является детектор Суперкамиоканде (Япония). Детектор имеет цилиндрическую форму. Диаметр рабочего объёма детектора 39.3 м., высота 41.4 м. Масса детектора составляет 50 ктонн, рабочий объём для регистрации солнечных нейтрино 22 ктонн. Детектор Суперкамиоканде имеет 11000 фотоумножителей, которые просматривают ~40% поверхности детектора.

Рис. 1. Установка ATLAS

Основная задача установки ATLAS — поиск Хиггсовских бозонов. Область соударения пучков окружена внутренним детектором. Он помещен в соленоид, который обеспечивает внутри детектора магнитное поле. Задача детектора определить точки соударения протонов и траектории вторичных частиц, которые образуются в результате соударения. Для этого применяются кремниевые детекторы (их в установке 12 тысяч) и детектор переходного излучения, состоящий из 440 тысяч дрейфовых трубок. Кремниевые детекторы обеспечивают измерение траектории частиц по 6-ти точкам с точностью 22 мкм, дрейфовые трубки — по 36-ти точкам с точностью 150 мкм. Внутренний детектор заключен в оболочку калориметров. Они обеспечивают прецизионное измерение энергий электронов, фотонов, «струй» адронов, возникающих при адронизации кварков, и «недостающей» энергии, уносимой нейтрино или другими слабовзаимодействующими частицами, например суперсимметричными партнерами. За калориметрами, в которых поглощаются все электроны, фотоны и адроны расположены мюонные детекторы. Мюоны имеют высокую проникающую способность и слабо поглощаются в электронном и адронном калориметрах. Поэтому практически все зарегистрированные мюонной системой заряженные частицы являются мюонами. Результаты измерений, полученные с помощью мюонной системы (внешней трековой системы), анализируются совместно с данными внутреннего детектора для полной идентификации частиц. Электронная система установки способна выделять 100 «интересных» событий в секунду из 1 миллиарда.

Более подробно об детекторах можно прочитать в разделе «Эксперимент».

Что такое счетчик Гейгера – история изобретения, принцип действия

В отличие от видимого света, теплового излучения, радиация это коварное и тем самым опасное для организма (при превышении допустимой дозы облучения) явление, которое невозможно определить нашими органами чувств. Ну нет у нас таких рецепторов.
Именно поэтому необходим прибор, который:

  • во-первых, это излучение определяет;
  • во–вторых выдает нам результат в единицах, которые можно интерпретировать и принять верное и своевременное решение: опасно, безопасно, сколько можно находится в той или иной радиоактивной зоне и т.д.

А поскольку ключевым элементом любого измерительного прибора является датчик, то таковым для бытового или профессионального дозиметра и является счетчик Гейгера.

Изобретение это давнее, история его создания относится еще к началу прошлого века, но как и во многих случаях, было столь удачным, что его базовые принципы неизменны на протяжении целого столетия.

Счетчик Гейгера — история создания

Бесспорно самый известный, востребованный и в буквально смысле жизненно необходимый инструмент для обнаружения излучений в самых разных отраслях промышленности и в быту.
Родоначальник ядерной физики Эрнст Резерфорд (Англия) в начале XX века разработал концепцию, смысл которой в том, что атом состоит из ядра (занимает небольшой объем в центре). Ядро в свою очередь состоит из более мелких элементов. При этом при определенных условиях ядро может распадаться с выделением этих частиц.
Чтобы исследовать структуру атома, подтвердить или опровергнуть свою гипотезу, Резерфорд проводил эксперименты по измерению электрического заряда потока альфа-частиц, попадающих в цель.
Сколько этих частиц будет выделяться ? Этот вопрос и представлял прежде всего чисто научный интерес, поскольку до ядерной бомбы было еще несколько десятилетий, как и до атомных станций.
Вместе с Резерфордом работал Гейгер (вот и встретилась нам эта фамилия) над задачей создания регистрирующего устройства для измерения радиации.

Студентом Ганс Гейгер изучал физику в Мюнхенском университете и служил в немецких вооруженных силах, прежде чем продолжить учебу, получил докторскую степень в 1906 году и защитил диссертацию по прохождению электрического тока через газ. Обращаем внимание, что последний факт, как оказалось впоследствии, имеет прямое отношение к принципу действия счетчика, названного его именем. Как и во многих изобретениях и открытиях, «пазл» складывается тогда, когда встречаются нужные люди, знания, в одном месте и в одно время.
Затем он переехал в Англию, чтобы стать лаборантом в лаборатории Резерфорда в Манчестерском университете.
Работая с одним из студентов, Эрнестом Марсденом, Гейгер разработал новое уникальное устройство, которое запускало альфа-частицы через золотую фольгу на экран, где они могли быть обнаружены как сцинтилляции (мерцание, кратковременные световые вспышки).

Суть опыта, без которого невозможно обсуждать историю атома, а именно существования атомного ядра, состояла в следующем. Источник радиации помещался перед тонкой золотой фольгой. Сам источник альфа-частиц и фольга находились в вакууме, чтобы частицы не сталкивались с молекулами воздуха, не ионизировали их и тогда результаты были бы искажены.

Справочно. Альфа-частицы задерживались фольгой, поскольку обладают малой проникающей способностью. Более высокой по степени проникновения обладают бета-частицы, нейтроны и гамма-излучение.

Эти меры позволили обнаруживать вспышки света. Но как подсчитать их количество в единицу времени и таким образом измерить радиацию ?
Сначала попытались установить микроскоп, который вращался вокруг золотой фольги, чтобы вручную подсчитывать количество сцинтилляций в темноте лаборатории. Но это было неудобно, утомительно, влиял человеческий фактор.
Нужны были другие решения для регистрации излучения. И в 1911 году Гейгер предложил как измерить количество вспышек при дневном свете.
Запаянная трубка заполняется инертным газом (аргоном, ксеноном или газовыми смесями) и служит катодом. А нить, проходящая внутри по центру, является анодом.
Приблизительно по такому же принципу были построены усилительные лампы, которые широко использовались в радиотехнике, звуковой технике, до эпохи транзисторов и микросхем.

Как работает счетчик Гейгера

  1. Пока в камеру не попадают частицы, газ является диэлектриком. Ток через него отсутствует.
  2. При приложении высокого напряжения, попадающее альфа-излучение, вызывало ионизацию газа (происходит столкновение с атомами), тем самым испускался поток электронов – отрицательных заряженных частиц.
  3. Из-за того, что электроды «выбиты», атомы газа становятся положительно заряженными.
  4. Это лавинообразный процесс, что приводит к возникновению электрического тока в газе. Образуется своеобразная мини-молния.
  5. При столкновении с атомами, энергия частиц уменьшается. Это процесс повторяется в виде импульсов – всплесков энергии, что регистрируется, а значит может быть измерено и переведено в удобные для восприятия цифры.

Амплитуда импульсов достаточно велика и может достигать нескольких Вольт, а значит может быть измерена непосредственно, без усиления.

То есть была достигнута главная цель — установлена зависимость между измеряемой величиной (радиация) и электрическим откликом.

Газоразрядная ионизационная трубка и была прообразом счетчика, основного элемента дозиметра, который был способен определять альфа-частицы (ядра гелия), представляющие собой комбинацию из пары нейтронов и протонов. Эти частицы излучаются атомом в процессе радиоактивного распада.
Конечно ни о каком точном подсчете отдельных частиц речь не идет. Измеряется общая интенсивность излучения.

Во время первой мировой войны Гейгер служил офицером в немецкой армии, в полевой артиллерии, что на время прервало его карьеру и научные исследования на несколько лет. После этого ученый вернулся как к преподавательской работе, так и к науке.

Объединив свои усилия с Вальтером Мюллером (это был его аспирант в университете), они смогли улучшить детектор излучения (вот откуда составное название «счетчик Гейгера-Мюллера»), его чувствительность, производительность и долговечность, чтобы можно было обнаруживать и другие типы радиоактивного излучения, кроме альфа-частиц, а именно бета-частицы и ионизирующие фотоны.
Впоследствии Гейгер продолжал изучать космические лучи, искусственную радиоактивность и деление атомных ядер.
Кстати, на войне, ученый серьезно подорвал свое здоровье, часто болел и в результате чего ушел из жизни в 62 года. Причем он умер в сентябре 1945-го, таким образом был свидетелем первого и единственного военного применения атомного оружия в Хиросиме и Нагасаки.

В ранней модели счетчика Гейгера газ низкого давления находится в медном цилиндре, через который проходит электрический ток. Радиоактивная частица, попадающая в цилиндр, вызывает всплеск электрического тока, который регистрируется счетчиком.
В частности именно такой детектор, выглядящий несколько несовременно, использовал Джеймс Чедвик, открывший нейтрон. Интересная деталь из биографии Чедвика. При сдаче вступительных экзаменов в университет в Манчестере, он случайно вместо экзамена по математике попал на физику (вот она судьба, может и нейтрон открыт был бы позже и вообще развитие науки пошло совсем по другому сценарию ?) и сделал серьезный вклад в ядерную физику. За что и был заслуженно награжден Нобелевской премией в 1935 году.

Почему счетчик Гейгера щелкает?

Мы же говорили о «молнии» внутри счетчика. А ведь настоящая молния не просто щелкает, а ее разряды сопровождаются настоящим грохотом. Приблизительна та же картина и здесь. Только в меньшем масштабе. Такая же ситуация наблюдается и с ионизаторами воздуха и другим приборами, которые вызывают электрический разряд в газе. Существует и природная ионизация под действием космических лучей, ультрафиолетового и других излучений, приходящих как от солнца, так и от далеких галактик.

Также дозиметры реагируют щелчками и на другие источники радиации, существующие в природе:

  • отвалы угольных шахт;
  • некоторые горные породы могут «фонить»;
  • радиоактивные газы;
  • стройматериалы и даже продукты питания с радиацией, чем особенно «грешат» грибы и некоторые лесные ягоды, которые по-прежнему изредка попадают на рынки Украины.

Количество щелчков пропорционально уровню регистрируемого излучения. Измерение производится за период времени. Чем этот период больше, тем выше точность определения радиации.

В каких единицах счетчик Гейгера измеряет радиацию ?

В единицах, называемых микрозивертами, за час воздействия. (Один зиверт равен 1 000 миллизивертов и 1 миллион микрозивертов).
Пример. Если счетчик Гейгера отображает 0,25 микрозиверта в час, это означает, что он обнаружил 0,25 микрозиверта излучения за это время.
Как оценить — много или это или мало ? Имеется в виду с точки вреда для здоровья.
Компьютерная томография одного органа выдает дозу облучения порядка 7000 микрозивертов. Это кстати в десятки раз больше, чем при облучении в процессе рентгеновского снимка. А вот величина в 2000000 микрозивертов указывает на серьезное радиационное поражение.
Существуют и другие технологии измерения радиации, но счетчики Гейгера – простые и относительно недорогие, бесспорно держат пальму первенства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *